These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32717226)

  • 1. Dehydrodieugenol improved lung inflammation in an asthma model by inhibiting the STAT3/SOCS3 and MAPK pathways.
    Santana FPR; da Silva RC; Ponci V; Pinheiro AJMCR; Olivo CR; Caperuto LC; Arantes-Costa FM; Claudio SR; Ribeiro DA; Tibério IFLC; Lima-Neto LG; Lago JHG; Prado CM
    Biochem Pharmacol; 2020 Oct; 180():114175. PubMed ID: 32717226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Eugenol and Dehydrodieugenol B from
    Bittencourt-Mernak MI; Pinheiro NM; da Silva RC; Ponci V; Banzato R; Pinheiro AJMCR; Olivo CR; Tibério IFLC; Lima Neto LG; Santana FPR; Lago JHG; Prado CM
    J Nat Prod; 2021 Aug; 84(8):2282-2294. PubMed ID: 34264084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of MAPK and STAT3-SOCS3 by Sakuranetin Attenuated Chronic Allergic Airway Inflammation in Mice.
    Santana FPR; da Silva RC; Grecco SDS; Pinheiro AJMCR; Caperuto LC; Arantes-Costa FM; Claudio SR; Yoshizaki K; Macchione M; Ribeiro DA; Tibério IFLC; Lima-Neto LG; Lago JHG; Prado CM
    Mediators Inflamm; 2019; 2019():1356356. PubMed ID: 31565031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of VAChT reduction and α7nAChR stimulation by PNU-282987 in lung inflammation in a model of chronic allergic airway inflammation.
    Pinheiro NM; Miranda CJCP; Santana FR; Bittencourt-Mernak M; Arantes-Costa FM; Olivo C; Perini A; Festa S; Caperuto LC; Tibério IFLC; Prado MAM; Martins MA; Prado VF; Prado CM
    Eur J Pharmacol; 2020 Sep; 882():173239. PubMed ID: 32619677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-inflammatory effects of reticuline on the JAK2/STAT3/SOCS3 and p38 MAPK/NF-κB signaling pathway in a mouse model of obesity-associated asthma.
    Lyu X; Liu J; Liu Z; Wu Y; Zhu P; Liu C
    Clin Respir J; 2024 Jan; 18(1):e13729. PubMed ID: 38286741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TLR2 regulates allergic airway inflammation through NF-κB and MAPK signaling pathways in asthmatic mice.
    Ma SQ; Wei HL; Zhang X
    Eur Rev Med Pharmacol Sci; 2018 May; 22(10):3138-3146. PubMed ID: 29863259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IL33/ST2 contributes to airway remodeling via p-JNK MAPK/STAT3 signaling pathway in OVA-induced allergic airway inflammation in mice.
    Zhang Y; Li S; Huang S; Cao L; Liu T; Zhao J; Wu J; Wang J; Cao L; Xu J; Dong L
    Exp Lung Res; 2019; 45(3-4):65-75. PubMed ID: 31112061
    [No Abstract]   [Full Text] [Related]  

  • 8. Status of Stat3 in an ovalbumin-induced mouse model of asthma: analysis of the role of Socs3 and IL-6.
    Paul B; Mishra V; Chaudhury B; Awasthi A; Das AB; Saxena U; Saxena A; Chauhan LK; Kumar P; Raisuddin S
    Int Arch Allergy Immunol; 2009; 148(2):99-108. PubMed ID: 18799889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvements of p38 MAPK and oxidative stress in the ozone-induced enhancement of AHR and pulmonary inflammation in an allergic asthma model.
    Bao A; Yang H; Ji J; Chen Y; Bao W; Li F; Zhang M; Zhou X; Li Q; Ben S
    Respir Res; 2017 Dec; 18(1):216. PubMed ID: 29284473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-carotene attenuates lipopolysaccharide-induced inflammation via inhibition of the NF-κB, JAK2/STAT3 and JNK/p38 MAPK signaling pathways in macrophages.
    Li R; Hong P; Zheng X
    Anim Sci J; 2019 Jan; 90(1):140-148. PubMed ID: 30460722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZDHXB-101 (3',5-Diallyl-2, 4'-dihydroxy-[1,1'-biphen-yl]-3,5'-dicarbaldehyde) protects against airway remodeling and hyperresponsiveness via inhibiting both the activation of the mitogen-activated protein kinase and the signal transducer and activator of transcription-3 signaling pathways.
    Jiang JX; Shen HJ; Guan Y; Jia YL; Shen J; Liu Q; Xie QM; Yan XF
    Respir Res; 2020 Jan; 21(1):22. PubMed ID: 31931796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antitrypanosomal activity and evaluation of the mechanism of action of dehydrodieugenol isolated from Nectandra leucantha (Lauraceae) and its methylated derivative against Trypanosoma cruzi.
    Grecco SS; Costa-Silva TA; Jerz G; de Sousa FS; Alves Conserva GA; Mesquita JT; Galuppo MK; Tempone AG; Neves BJ; Andrade CH; Cunha RL; Uemi M; Sartorelli P; Lago JH
    Phytomedicine; 2017 Jan; 24():62-67. PubMed ID: 28160863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. meso-Dihydroguaiaretic acid attenuates airway inflammation and mucus hypersecretion in an ovalbumin-induced murine model of asthma.
    Song JW; Seo CS; Cho ES; Kim TI; Won YS; Kwon HJ; Son JK; Son HY
    Int Immunopharmacol; 2016 Feb; 31():239-47. PubMed ID: 26773771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titanium dioxide nanoparticles augment allergic airway inflammation and Socs3 expression via NF-κB pathway in murine model of asthma.
    Mishra V; Baranwal V; Mishra RK; Sharma S; Paul B; Pandey AC
    Biomaterials; 2016 Jun; 92():90-102. PubMed ID: 27057692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospray mass-spectrometry guided target isolation of neolignans from Nectandra leucantha (Lauraceae) by high performance- and spiral-coil countercurrent chromatography.
    Dos Santos Grecco S; Letsyo E; Tempone AG; Ghilardi Lago JH; Jerz G
    J Chromatogr A; 2019 Dec; 1608():460422. PubMed ID: 31500882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. JAX2, an ethanol extract of Hyssopus cuspidatus Boriss, can prevent bronchial asthma by inhibiting MAPK/NF-κB inflammatory signaling.
    Yuan F; Liu R; Hu M; Rong X; Bai L; Xu L; Mao Y; Hasimu H; Sun Y; He J
    Phytomedicine; 2019 Apr; 57():305-314. PubMed ID: 30807985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligustrazine attenuates inflammation and the associated chemokines and receptors in ovalbumine-induced mouse asthma model.
    Wei Y; Liu J; Zhang H; Du X; Luo Q; Sun J; Liu F; Li M; Xu F; Wei K; Dong J
    Environ Toxicol Pharmacol; 2016 Sep; 46():55-61. PubMed ID: 27438894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biseugenol Exhibited Anti-Inflammatory and Anti-Asthmatic Effects in an Asthma Mouse Model of Mixed-Granulocytic Asthma.
    Ponci V; Silva RC; Santana FPR; Grecco SS; Fortunato CRM; Oliveira MA; Tavares-de-Lima W; Olivo CR; Tibério IFLC; Gomes KS; Prado CM; Lago JHG
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33217892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peucedanum japonicum extract attenuates allergic airway inflammation by inhibiting Th2 cell activation and production of pro-inflammatory mediators.
    Chun JM; Lee AR; Kim HS; Lee AY; Gu GJ; Moon BC; Kwon BI
    J Ethnopharmacol; 2018 Jan; 211():78-88. PubMed ID: 28919220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ilex asprella aqueous extracts exert in vivo anti-inflammatory effects by regulating the NF-κB, JAK2/STAT3, and MAPK signaling pathways.
    Yang X; Gao X; Du B; Zhao F; Feng X; Zhang H; Zhu Z; Xing J; Han Z; Tu P; Chai X
    J Ethnopharmacol; 2018 Oct; 225():234-243. PubMed ID: 29981433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.