These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 32717277)

  • 1. TMS coil orientation and muscle activation influence lower limb intracortical excitability.
    Hand BJ; Opie GM; Sidhu SK; Semmler JG
    Brain Res; 2020 Nov; 1746():147027. PubMed ID: 32717277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of coil type and limb dominance in the assessment of lower-limb motor cortex excitability using TMS.
    Dharmadasa T; Matamala JM; Howells J; Simon NG; Vucic S; Kiernan MC
    Neurosci Lett; 2019 Apr; 699():84-90. PubMed ID: 30710665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related differences in short- and long-interval intracortical inhibition in a human hand muscle.
    Opie GM; Semmler JG
    Brain Stimul; 2014; 7(5):665-72. PubMed ID: 25088463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of waveform and current direction on short-interval intracortical facilitation: a paired-pulse TMS study.
    Delvendahl I; Lindemann H; Jung NH; Pechmann A; Siebner HR; Mall V
    Brain Stimul; 2014; 7(1):49-58. PubMed ID: 24075915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-interval intracortical inhibition and facilitation targeting upper and lower limb muscles.
    Mrachacz-Kersting N; Stevenson AJT; Ziemann U
    Sci Rep; 2021 Nov; 11(1):21993. PubMed ID: 34754010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of non-target leg activation, TMS coil orientation, and limb dominance on lower limb motor cortex excitability.
    Smith MC; Stinear JW; Alan Barber P; Stinear CM
    Brain Res; 2017 Jan; 1655():10-16. PubMed ID: 27840187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is it possible to compare inhibitory and excitatory intracortical circuits in face and hand primary motor cortex?
    Ginatempo F; Loi N; Manca A; Rothwell JC; Deriu F
    J Physiol; 2022 Aug; 600(15):3567-3583. PubMed ID: 35801987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of dorsal premotor cortex differentially influences I-wave excitability in primary motor cortex of young and older adults.
    Liao WY; Opie GM; Ziemann U; Semmler JG
    J Physiol; 2023 Jul; 601(14):2959-2974. PubMed ID: 37194369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength-Duration Relationship in Paired-pulse Transcranial Magnetic Stimulation (TMS) and Its Implications for Repetitive TMS.
    Shirota Y; Sommer M; Paulus W
    Brain Stimul; 2016; 9(5):755-761. PubMed ID: 27234142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute High-Intensity Interval Exercise Modulates Corticospinal Excitability in Older Adults.
    Neva JL; Greeley B; Chau B; Ferris JK; Jones CB; Denyer R; Hayward KS; Campbell KL; Boyd LA
    Med Sci Sports Exerc; 2022 Apr; 54(4):673-682. PubMed ID: 34939609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of Waveform and Current Direction on the Efficacy and Test-Retest Reliability of Transcranial Magnetic Stimulation.
    Davila-Pérez P; Jannati A; Fried PJ; Cudeiro Mazaira J; Pascual-Leone A
    Neuroscience; 2018 Nov; 393():97-109. PubMed ID: 30300705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of current direction and muscle activation on motor cortex neuroplasticity induced by repetitive paired-pulse transcranial magnetic stimulation.
    Sasaki R; Liao WY; Opie GM; Semmler JG
    Eur J Neurosci; 2023 Sep; 58(5):3270-3285. PubMed ID: 37501330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased intracortical inhibition in elderly adults with anterior-posterior current flow: A TMS study.
    Sale MV; Lavender AP; Opie GM; Nordstrom MA; Semmler JG
    Clin Neurophysiol; 2016 Jan; 127(1):635-640. PubMed ID: 25959013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Threshold tracking primary motor cortex inhibition: the influence of current direction.
    Cirillo J; Byblow WD
    Eur J Neurosci; 2016 Oct; 44(8):2614-2621. PubMed ID: 27529396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-interval and long-interval intracortical inhibition of TMS-evoked EEG potentials.
    Premoli I; Király J; Müller-Dahlhaus F; Zipser CM; Rossini P; Zrenner C; Ziemann U; Belardinelli P
    Brain Stimul; 2018; 11(4):818-827. PubMed ID: 29572124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated cathodal transspinal pulse and direct current stimulation modulate cortical and corticospinal excitability differently in healthy humans.
    Murray LM; Knikou M
    Exp Brain Res; 2019 Jul; 237(7):1841-1852. PubMed ID: 31079235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Transcranial Static Magnetic Stimulation on Motor Cortex Evaluated by Different TMS Waveforms and Current Directions.
    Davila-Pérez P; Pascual-Leone A; Cudeiro J
    Neuroscience; 2019 Aug; 413():22-30. PubMed ID: 31195056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical inhibition and facilitation are mediated by distinct physiological processes.
    Pavey N; Menon P; van den Bos MAJ; Kiernan MC; Vucic S
    Neurosci Lett; 2023 Apr; 803():137191. PubMed ID: 36924929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.