These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 32717349)

  • 21. Arabidopsis Apoplast TET8 Positively Correlates to Leaf Senescence and
    Zimmerman JA; Verboonen B; Harrison Hanson AP; Brusslan JA
    bioRxiv; 2024 May; ():. PubMed ID: 38798530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles.
    Verderio C; Gabrielli M; Giussani P
    J Lipid Res; 2018 Aug; 59(8):1325-1340. PubMed ID: 29853528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Free sphingobases induce RBOHD-dependent reactive oxygen species production in Arabidopsis leaves.
    Peer M; Bach M; Mueller MJ; Waller F
    FEBS Lett; 2011 Oct; 585(19):3006-10. PubMed ID: 21856300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased endothelial sodium channel activity by extracellular vesicles in human aortic endothelial cells: putative role of MLP1 and bioactive lipids.
    Nouri MZ; Yu L; Liu LP; Chacko KM; Denslow ND; LaDisa JF; Alli AA
    Am J Physiol Cell Physiol; 2021 Sep; 321(3):C535-C548. PubMed ID: 34288724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Port-to-port delivery: Mobilization of toxic sphingolipids via extracellular vesicles.
    Scesa G; Moyano AL; Bongarzone ER; Givogri MI
    J Neurosci Res; 2016 Nov; 94(11):1333-40. PubMed ID: 27638615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arabidopsis apoplast TET8 positively correlates to leaf senescence, and
    Zimmerman JA; Verboonen B; Harrison Hanson AP; Arballo LR; Brusslan JA
    Plant Direct; 2024 Sep; 8(9):e70006. PubMed ID: 39323734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective methods for isolation and purification of extracellular vesicles from plants.
    Huang Y; Wang S; Cai Q; Jin H
    J Integr Plant Biol; 2021 Dec; 63(12):2020-2030. PubMed ID: 34668639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation.
    Mamode Cassim A; Navon Y; Gao Y; Decossas M; Fouillen L; Grélard A; Nagano M; Lambert O; Bahammou D; Van Delft P; Maneta-Peyret L; Simon-Plas F; Heux L; Jean B; Fragneto G; Mortimer JC; Deleu M; Lins L; Mongrand S
    J Biol Chem; 2021; 296():100602. PubMed ID: 33785359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipidomic profiling of extracellular vesicles derived from prostate and prostate cancer cell lines.
    Brzozowski JS; Jankowski H; Bond DR; McCague SB; Munro BR; Predebon MJ; Scarlett CJ; Skelding KA; Weidenhofer J
    Lipids Health Dis; 2018 Sep; 17(1):211. PubMed ID: 30193584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of glycosylinositol phosphoceramide during plant tissue homogenization.
    Takai Y; Hasi RY; Matsumoto N; Fujita C; Ali H; Hayashi J; Kawakami R; Aihara M; Ishikawa T; Imai H; Wakida M; Ando K; Tanaka T
    J Biochem; 2023 Dec; 175(1):115-124. PubMed ID: 37827526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Platelet extracellular vesicles mediate transfusion-related acute lung injury by imbalancing the sphingolipid rheostat.
    McVey MJ; Weidenfeld S; Maishan M; Spring C; Kim M; Tabuchi A; Srbely V; Takabe-French A; Simmons S; Arenz C; Semple JW; Kuebler WM
    Blood; 2021 Feb; 137(5):690-701. PubMed ID: 33232973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biogenesis of Extracellular Vesicles during Herpes Simplex Virus 1 Infection: Role of the CD63 Tetraspanin.
    Dogrammatzis C; Deschamps T; Kalamvoki M
    J Virol; 2019 Jan; 93(2):. PubMed ID: 30355691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular vesicles as a promising source of lipid biomarkers for breast cancer detection in blood plasma.
    Dorado E; Doria ML; Nagelkerke A; McKenzie JS; Maneta-Stavrakaki S; Whittaker TE; Nicholson JK; Coombes RC; Stevens MM; Takats Z
    J Extracell Vesicles; 2024 Mar; 13(3):e12419. PubMed ID: 38443328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis.
    Rennie EA; Ebert B; Miles GP; Cahoon RE; Christiansen KM; Stonebloom S; Khatab H; Twell D; Petzold CJ; Adams PD; Dupree P; Heazlewood JL; Cahoon EB; Scheller HV
    Plant Cell; 2014 Aug; 26(8):3314-25. PubMed ID: 25122154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LAPTM4B controls the sphingolipid and ether lipid signature of small extracellular vesicles.
    Dichlberger A; Zhou K; Bäck N; Nyholm T; Backman A; Mattjus P; Ikonen E; Blom T
    Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Feb; 1866(2):158855. PubMed ID: 33181324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipidomic Analysis of Plasma Extracellular Vesicles Derived from Alzheimer's Disease Patients.
    Krokidis MG; Pucha KA; Mustapic M; Exarchos TP; Vlamos P; Kapogiannis D
    Cells; 2024 Apr; 13(8):. PubMed ID: 38667317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sphingolipids with 2-hydroxy fatty acids aid in plasma membrane nanodomain organization and oxidative burst.
    Ukawa T; Banno F; Ishikawa T; Kasahara K; Nishina Y; Inoue R; Tsujii K; Yamaguchi M; Takahashi T; Fukao Y; Kawai-Yamada M; Nagano M
    Plant Physiol; 2022 Jun; 189(2):839-857. PubMed ID: 35312013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Separation and identification of major plant sphingolipid classes from leaves.
    Markham JE; Li J; Cahoon EB; Jaworski JG
    J Biol Chem; 2006 Aug; 281(32):22684-94. PubMed ID: 16772288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomic and lipidomic analyses of the Arabidopsis atg5 autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition.
    Havé M; Luo J; Tellier F; Balliau T; Cueff G; Chardon F; Zivy M; Rajjou L; Cacas JL; Masclaux-Daubresse C
    New Phytol; 2019 Aug; 223(3):1461-1477. PubMed ID: 31077612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted Lipidomics for Characterization of PUFAs and Eicosanoids in Extracellular Vesicles.
    Reinicke M; Shamkeeva S; Hell M; Isermann B; Ceglarek U; Heinemann ML
    Nutrients; 2022 Mar; 14(7):. PubMed ID: 35405932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.