BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32717467)

  • 1. Effect of ferrolysis and organic matter accumulation on chromate adsorption characteristics of an Oxisol-derived paddy soil.
    Hua H; Zhao Z; Xu R; Chang E; Fang D; Dong Y; Hong Z; Shi R; Jiang J
    Sci Total Environ; 2020 Nov; 744():140868. PubMed ID: 32717467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol.
    Jiang J; Dai Z; Sun R; Zhao Z; Dong Y; Hong Z; Xu R
    Chemosphere; 2017 Jul; 179():232-241. PubMed ID: 28371707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Kinetics of Aging and Reducing Processes of Cr(VI) in Two Soils.
    Yang Y; Peng Y; Yang Z; Cheng P; Li F; Wang M; Liu T
    Bull Environ Contam Toxicol; 2019 Jul; 103(1):82-89. PubMed ID: 30850854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Cr(vi) adsorption on soils: the role of the competition of soil organic matter.
    Shi Z; Peng S; Lin X; Liang Y; Lee SZ; Allen HE
    Environ Sci Process Impacts; 2020 Jan; 22(1):95-104. PubMed ID: 31897461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and desorption for dynamics transport of hexavalent chromium (Cr(VI)) in soil column.
    Zhang X; Tong J; Hu BX; Wei W
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):459-468. PubMed ID: 29043590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of land use pattern change from paddy soil to vegetable soil on the adsorption-desorption of cadmium by soil aggregates.
    Zhang Q; Li Z; Huang B; Luo N; Long L; Huang M; Zhai X; Zeng G
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2734-2743. PubMed ID: 27834052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of Cr(VI) by malic acid in aqueous Fe-rich soil suspensions.
    Zhong L; Yang J
    Chemosphere; 2012 Mar; 86(10):973-8. PubMed ID: 22153486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of Cr (VI) by inorganic-organic clay.
    Rathnayake SI; Martens WN; Xi Y; Frost RL; Ayoko GA
    J Colloid Interface Sci; 2017 Mar; 490():163-173. PubMed ID: 27912114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromate removal by an iron sorbent: mechanism and modeling.
    Smith E; Ghiassi K
    Water Environ Res; 2006 Jan; 78(1):84-93. PubMed ID: 16553170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of iron (hydr)oxides and Cr(VI) retention mechanisms in soils from tropical and subtropical areas of China.
    Wang W; Yang L; Gao D; Yu M; Jiang S; Li J; Zhang J; Feng X; Tan W; Liu F; Yin M; Yin H
    J Hazard Mater; 2024 Mar; 465():133107. PubMed ID: 38043424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil].
    Chang TJ; Cui XQ; Ruan Z; Zhao XL
    Huan Jing Ke Xue; 2014 Jun; 35(6):2381-91. PubMed ID: 25158521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple model to predict chromate partitioning in selected soils from China.
    Gu X; Xie J; Wang X; Evans LJ
    J Hazard Mater; 2017 Jan; 322(Pt B):421-429. PubMed ID: 27773440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of phthalic acid and salicylic acid and their effect on exchangeable Al capacity of variable-charge soils.
    Li J; Xu R
    J Colloid Interface Sci; 2007 Feb; 306(1):3-10. PubMed ID: 17095003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China.
    Ma L; Xu R; Jiang J
    J Environ Sci (China); 2010; 22(5):689-95. PubMed ID: 20608504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of chromate sorption by three variable charge soils.
    Jiang J; Xu R; Wang Y; Zhao A
    Chemosphere; 2008 Apr; 71(8):1469-75. PubMed ID: 18291439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils.
    Zhao X; Jiang T; Du B
    Chemosphere; 2014 Mar; 99():41-8. PubMed ID: 24289979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-scale assessment of the impact of salinity on the desorption of chromate from hematite: Sea level rise implications.
    Barreto MSC; Elzinga EJ; Kubicki JD; Sparks DL
    J Hazard Mater; 2024 Mar; 465():133041. PubMed ID: 38043423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of soil components in synthetic mixtures during the adsorption and speciation changes of Cr(VI): Conjunction of the modeling approach with spectroscopic and isotopic investigations.
    Veselská V; Šillerová H; Göttlicher J; Michálková Z; Siddique JA; Číhalová S; Chrastný V; Steininger R; Mangold S; Komárek M
    Environ Int; 2019 Jun; 127():848-857. PubMed ID: 31075676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.