BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 32717887)

  • 1. 3D-Printing Piezoelectric Composite with Honeycomb Structure for Ultrasonic Devices.
    Zeng Y; Jiang L; Sun Y; Yang Y; Quan Y; Wei S; Lu G; Li R; Rong J; Chen Y; Zhou Q
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32717887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Electromechanical Properties on 3-D Printed Piezoelectric Composite Scaffold Structures.
    Sebastian T; Bach M; Geiger A; Lusiola T; Kozielski L; Clemens F
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing of BaTiO
    Cheng J; Chen Y; Wu JW; Ji XR; Wu SH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of PVDF/BaTiO
    Yang C; Song S; Chen F; Chen N
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41723-41734. PubMed ID: 34431292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile preparation of high loading filled PVDF/BaTiO
    Song S; Li Y; Wang Q; Zhang C
    RSC Adv; 2021 Nov; 11(60):37923-37931. PubMed ID: 35498085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Three-Dimensional Printing of Architected Piezoelectric Sensors in Minutes.
    Liu S; Wang W; Xu W; Liu L; Zhang W; Song K; Chen X
    Research (Wash D C); 2022; 2022():9790307. PubMed ID: 35935134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of Flexible BaTiO
    Wei X; Xu K; Wang Y; Zhang Z; Chen Z
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11740-11748. PubMed ID: 38394674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printed Piezoelectric Porous Bioactive Scaffolds and Clinical Ultrasonic Stimulation Can Help in Enhanced Bone Regeneration.
    Sikder P; Nagaraju P; Naganaboyina HPS
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.
    Kim K; Zhu W; Qu X; Aaronson C; McCall WR; Chen S; Sirbuly DJ
    ACS Nano; 2014 Oct; 8(10):9799-806. PubMed ID: 25046646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printed Nanocomposite Energy Harvesters with Controlled Alignment of Barium Titanate Nanowires.
    Malakooti MH; Julé F; Sodano HA
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38359-38367. PubMed ID: 30360049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Fabrication and Characterization of BaTiO
    Smirnov A; Chugunov S; Kholodkova A; Isachenkov M; Tikhonov A; Dubinin O; Shishkovsky I
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation.
    Lu H; Cui H; Lu G; Jiang L; Hensleigh R; Zeng Y; Rayes A; Panduranga MK; Acharya M; Wang Z; Irimia A; Wu F; Carman GP; Morales JM; Putterman S; Martin LW; Zhou Q; Zheng XR
    Nat Commun; 2023 Apr; 14(1):2418. PubMed ID: 37105973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printed Piezoelectric Array for Improving Acoustic Field and Spatial Resolution in Medical Ultrasonic Imaging.
    Chen Z; Qian X; Song X; Jiang Q; Huang R; Yang Y; Li R; Shung K; Chen Y; Zhou Q
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineering.
    Polley C; Distler T; Detsch R; Lund H; Springer A; Boccaccini AR; Seitz H
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kirigami-Origami-Inspired Lead-Free Piezoelectric Ceramics.
    Wang Z; Ma D; Wang Y; Xie Y; Yu Z; Cheng J; Li L; Sun L; Dong S; Wang H
    Adv Sci (Weinh); 2023 Jun; 10(17):e2207059. PubMed ID: 37096841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures.
    Bodkhe S; Turcot G; Gosselin FP; Therriault D
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20833-20842. PubMed ID: 28553704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of piezoelectric and bioactive barium titanate-bioactive glass scaffolds for bone tissue engineering.
    Polley C; Distler T; Scheufler C; Detsch R; Lund H; Springer A; Schneidereit D; Friedrich O; Boccaccini AR; Seitz H
    Mater Today Bio; 2023 Aug; 21():100719. PubMed ID: 37529217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed polymer composite devices based on a ferroelectric chiral ammonium salt for high-performance piezoelectric energy harvesting.
    Sahoo S; Kothavade PA; Naphade DR; Torris A; Praveenkumar B; Zaręba JK; Anthopoulos TD; Shanmuganathan K; Boomishankar R
    Mater Horiz; 2023 Jul; 10(8):3153-3161. PubMed ID: 37227322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Liquid-Assisted 3D Printing of Self-Polarized β-PVDF for Flexible Piezoelectric Energy Harvesting.
    Liu X; Shang Y; Zhang J; Zhang C
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14334-14341. PubMed ID: 33729751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.