These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 32718070)

  • 1. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences.
    Rivero-Pino F; Espejo-Carpio FJ; Guadix EM
    Foods; 2020 Jul; 9(8):. PubMed ID: 32718070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins.
    Nongonierma AB; FitzGerald RJ
    J Food Biochem; 2019 Jan; 43(1):e12451. PubMed ID: 31353485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive food-derived peptides for functional nutrition: Effect of fortification, processing and storage on peptide stability and bioactivity within food matrices.
    Rivero-Pino F
    Food Chem; 2023 Apr; 406():135046. PubMed ID: 36446284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach.
    Farias TC; de Souza TSP; Fai AEC; Koblitz MGB
    Nutrients; 2022 Oct; 14(20):. PubMed ID: 36296965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Comparison of Peptides from Chickpea Protein Hydrolysates Using Either Bromelain or Gastrointestinal Enzymes and Their Relationship with Markers of Type 2 Diabetes and Bitterness.
    Chandrasekaran S; Luna-Vital D; de Mejia EG
    Nutrients; 2020 Dec; 12(12):. PubMed ID: 33339265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel dipeptidyl peptidase IV and α-glucosidase inhibitory peptides from Tenebrio molitor.
    Rivero-Pino F; Guadix A; Guadix EM
    Food Funct; 2021 Jan; 12(2):873-880. PubMed ID: 33410437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes.
    González-Montoya M; Hernández-Ledesma B; Mora-Escobedo R; Martínez-Villaluenga C
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30249015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review.
    Antony P; Vijayan R
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant proteases for bioactive peptides release: A review.
    Mazorra-Manzano MA; Ramírez-Suarez JC; Yada RY
    Crit Rev Food Sci Nutr; 2018; 58(13):2147-2163. PubMed ID: 28394630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review.
    Kehinde BA; Sharma P
    Crit Rev Food Sci Nutr; 2020; 60(2):322-340. PubMed ID: 30463420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources.
    Rivero-Pino F; Espejo-Carpio FJ; Guadix EM
    Food Chem; 2021 Aug; 354():129473. PubMed ID: 33743449
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Islam MS; Hongxin W; Admassu H; Mahdi AA; Chaoyang M; Wei FA
    Food Technol Biotechnol; 2021 Sep; 59(3):360-375. PubMed ID: 34759767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV.
    Mojica L; Chen K; de Mejía EG
    J Food Sci; 2015 Jan; 80(1):H188-98. PubMed ID: 25495131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update.
    Nong NTP; Hsu JL
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food protein-derived bioactive peptides in management of type 2 diabetes.
    Patil P; Mandal S; Tomar SK; Anand S
    Eur J Nutr; 2015 Sep; 54(6):863-80. PubMed ID: 26154777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein.
    Wang R; Zhao H; Pan X; Orfila C; Lu W; Ma Y
    Food Sci Nutr; 2019 May; 7(5):1848-1856. PubMed ID: 31139399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Tenebrio molitor protein as a source of peptides for modulating physiological processes.
    Rivero Pino F; Pérez Gálvez R; Espejo Carpio FJ; Guadix EM
    Food Funct; 2020 May; 11(5):4376-4386. PubMed ID: 32373903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded Sardine pilchardus protein.
    Rivero-Pino F; Espejo-Carpio FJ; Guadix EM
    Food Chem; 2020 Oct; 328():127096. PubMed ID: 32485583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro antidiabetic and antihypercholesterolemic activities of camel milk protein hydrolysates derived upon simulated gastrointestinal digestion of milk from different camel breeds.
    Mudgil P; Redha AA; Nirmal NP; Maqsood S
    J Dairy Sci; 2023 May; 106(5):3098-3108. PubMed ID: 36935238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of enzymatic hydrolysates with in vitro antioxidant, antihypertensive, and antidiabetic properties from proteins derived from Arthrospira platensis.
    Villaró S; Jiménez-Márquez S; Musari E; Bermejo R; Lafarga T
    Food Res Int; 2023 Jan; 163():112270. PubMed ID: 36596181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.