BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32718610)

  • 1. Change of network structure in agarose gels by aging during storage studied by NMR and electrophoresis.
    Descallar FBA; Matsukawa S
    Carbohydr Polym; 2020 Oct; 245():116497. PubMed ID: 32718610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of gelation mechanism and molecular interactions of agarose in solution by 1H NMR.
    Dai B; Matsukawa S
    Carbohydr Res; 2013 Jan; 365():38-45. PubMed ID: 23202536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient electric birefringence of agarose gels. II. Reversing electric fields and comparison with other polymer gels.
    Stellwagen J; Stellwagen NC
    Biopolymers; 1994 Sep; 34(9):1259-73. PubMed ID: 7948738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of spike pulses on the orientation of the agarose gel matrix.
    Stellwagen J; Stellwagen NC
    Electrophoresis; 1995 May; 16(5):700-3. PubMed ID: 7588547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A freeze-and-thaw method to reuse agarose gels for DNA electrophoresis.
    Sasagawa N
    Biosci Trends; 2018; 12(6):627-629. PubMed ID: 30674763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the "door-corridor" model of gel electrophoresis. III. The gel constant and resistance, and the net charge, friction, diffusion and electrokinetic force of the migrating molecules.
    Kozulić B
    Appl Theor Electrophor; 1994; 4(3):149-59. PubMed ID: 7612696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion mechanisms of DNA in agarose gels: NMR studies and Monte Carlo simulations.
    Bochert I; Günther JP; Fischer P; Majer G
    J Chem Phys; 2022 Jun; 156(24):245103. PubMed ID: 35778069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple, efficient, and economical method for recovering DNA from agarose gel.
    Fan CF; Mei XG
    Prep Biochem Biotechnol; 2005; 35(1):71-8. PubMed ID: 15704498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Flip-flop" orientation of agarose gel fibers in pulsed alternating electric fields.
    Stellwagen NC; Stellwagen J
    Electrophoresis; 1993 Apr; 14(4):355-68. PubMed ID: 8500468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of DNA from Agarose Gels Using Glass Beads.
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2019 Sep; 2019(9):. PubMed ID: 31481493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of excluded volume to increase the heterogeneity of pore size in agarose gels.
    Serwer P; Harris RA; Miller MM; Griess GA
    Electrophoresis; 1996 Jun; 17(6):971-6. PubMed ID: 8832161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient electric birefringence of agarose gels. I. Unidirectional electric fields.
    Stellwagen J; Stellwagen NC
    Biopolymers; 1994 Feb; 34(2):187-201. PubMed ID: 8142588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of linear polymer additives on the electroosmotic characteristics of agarose gels in ultrathin-layer electrophoresis.
    Lengyel T; Guttman A
    J Chromatogr A; 1999 Aug; 853(1-2):511-8. PubMed ID: 10486760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship of agarose gel structure to the sieving of spheres during agarose gel electrophoresis.
    Griess GA; Guiseley KB; Serwer P
    Biophys J; 1993 Jul; 65(1):138-48. PubMed ID: 8369423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoresis of DNA in oriented agarose gels.
    Holmes DL; Stellwagen NC
    J Biomol Struct Dyn; 1989 Oct; 7(2):311-27. PubMed ID: 2604908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorbed gels versus brushes: viscoelastic differences.
    Dutta AK; Belfort G
    Langmuir; 2007 Mar; 23(6):3088-94. PubMed ID: 17286418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance field inversion capillary electrophoresis of 0.1-23 kbp DNA fragments with low-gelling, replaceable agarose gels.
    Chen N; Wu L; Palm A; Srichaiyo T; Hjertén S
    Electrophoresis; 1996 Sep; 17(9):1443-50. PubMed ID: 8905260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size effects on diffusion processes within agarose gels.
    Fatin-Rouge N; Starchev K; Buffle J
    Biophys J; 2004 May; 86(5):2710-9. PubMed ID: 15111390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of intact DNA nanostructures after agarose gel-based separation.
    Bellot G; McClintock MA; Lin C; Shih WM
    Nat Methods; 2011 Mar; 8(3):192-4. PubMed ID: 21358621
    [No Abstract]   [Full Text] [Related]  

  • 20. The formation of small-pore gels by an electrically charged agarose derivative.
    Griess GA; Guiseley KB; Miller MM; Harris RA; Serwer P
    J Struct Biol; 1998 Oct; 123(2):134-42. PubMed ID: 9843667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.