These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 32718611)
1. Demonstration of the cryoprotective properties of the fucose-containing polysaccharide FucoPol. Guerreiro BM; Freitas F; Lima JC; Silva JC; Dionísio M; Reis MAM Carbohydr Polym; 2020 Oct; 245():116500. PubMed ID: 32718611 [TBL] [Abstract][Full Text] [Related]
2. Development of a Cryoprotective Formula Based on the Fucose-Containing Polysaccharide FucoPol. Guerreiro BM; Silva JC; Torres CAV; Alves VD; Lima JC; Reis MAM; Freitas F ACS Appl Bio Mater; 2021 Jun; 4(6):4800-4808. PubMed ID: 35007029 [TBL] [Abstract][Full Text] [Related]
3. Elevated fucose content enhances the cryoprotective performance of anionic polysaccharides. Guerreiro BM; Concórdio-Reis P; Pericão H; Martins F; Moppert X; Guézennec J; Lima JC; Silva JC; Freitas F Int J Biol Macromol; 2024 Mar; 261(Pt 2):129577. PubMed ID: 38246459 [TBL] [Abstract][Full Text] [Related]
4. Ice modulatory effect of the polysaccharide FucoPol in directional freezing. Guerreiro BM; Lou LT; Rubinsky B; Freitas F Soft Matter; 2023 Nov; 19(46):8978-8987. PubMed ID: 37964678 [TBL] [Abstract][Full Text] [Related]
5. Silver nanocomposites based on the bacterial fucose-rich polysaccharide secreted by Enterobacter A47 for wound dressing applications: Synthesis, characterization and in vitro bioactivity. Concórdio-Reis P; Pereira CV; Batista MP; Sevrin C; Grandfils C; Marques AC; Fortunato E; Gaspar FB; Matias AA; Freitas F; Reis MAM Int J Biol Macromol; 2020 Nov; 163():959-969. PubMed ID: 32653376 [TBL] [Abstract][Full Text] [Related]
6. Cryoprotective Polysaccharides with Ordered Gel Structures Induce Ice Growth Anticipation and Survival Enhancement during Cell Cryopreservation. Guerreiro BM; Dionísio MM; Lima JC; Silva JC; Freitas F Biomacromolecules; 2024 Jun; 25(6):3384-3397. PubMed ID: 38739855 [TBL] [Abstract][Full Text] [Related]
7. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Olijve LL; Meister K; DeVries AL; Duman JG; Guo S; Bakker HJ; Voets IK Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3740-5. PubMed ID: 26936953 [TBL] [Abstract][Full Text] [Related]
8. The crystallization properties of antifreeze GelMA hydrogel and its application in cryopreservation of tissue-engineered skin constructs. Tan J; Li J; Zhou X J Biomed Mater Res B Appl Biomater; 2024 May; 112(5):e35408. PubMed ID: 38676958 [TBL] [Abstract][Full Text] [Related]
9. The Impact of Salts on the Ice Recrystallization Inhibition Activity of Antifreeze (Glyco)Proteins. Surís-Valls R; Voets IK Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31390745 [TBL] [Abstract][Full Text] [Related]
10. C-linked antifreeze glycoprotein (C-AFGP) analogues as novel cryoprotectants. Leclère M; Kwok BK; Wu LK; Allan DS; Ben RN Bioconjug Chem; 2011 Sep; 22(9):1804-10. PubMed ID: 21815632 [TBL] [Abstract][Full Text] [Related]
11. Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds. Lourenço SC; Torres CAV; Nunes D; Duarte P; Freitas F; Reis MAM; Fortunato E; Moldão-Martins M; da Costa LB; Alves VD Int J Biol Macromol; 2017 Nov; 104(Pt A):1099-1106. PubMed ID: 28687391 [TBL] [Abstract][Full Text] [Related]
12. Rheological studies of the fucose-rich exopolysaccharide FucoPol. Torres CA; Ferreira AR; Freitas F; Reis MA; Coelhoso I; Sousa I; Alves VD Int J Biol Macromol; 2015 Aug; 79():611-7. PubMed ID: 26014143 [TBL] [Abstract][Full Text] [Related]
13. Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Raymond JA; Knight CA Cryobiology; 2003 Apr; 46(2):174-81. PubMed ID: 12686207 [TBL] [Abstract][Full Text] [Related]
14. Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation. Capicciotti CJ; Poisson JS; Boddy CN; Ben RN Cryobiology; 2015 Apr; 70(2):79-89. PubMed ID: 25595636 [TBL] [Abstract][Full Text] [Related]
15. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes. Mahatabuddin S; Tsuda S Adv Exp Med Biol; 2018; 1081():321-337. PubMed ID: 30288717 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Control over Ice Nucleation Stochasticity Using a Carbohydrate Polymer Cryoprotectant. Guerreiro BM; Consiglio AN; Rubinsky B; Powell-Palm MJ; Freitas F ACS Biomater Sci Eng; 2022 May; 8(5):1852-1859. PubMed ID: 35380422 [TBL] [Abstract][Full Text] [Related]
17. Extracellular Antifreeze Protein Significantly Enhances the Cryopreservation of Cell Monolayers. Tomás RMF; Bailey TL; Hasan M; Gibson MI Biomacromolecules; 2019 Oct; 20(10):3864-3872. PubMed ID: 31498594 [TBL] [Abstract][Full Text] [Related]
18. Comparative Study on the Cryoprotective Effects of Three Recombinant Antifreeze Proteins from Pichia pastoris GS115 on Hydrated Gluten Proteins during Freezing. Liu M; Liang Y; Zhang H; Wu G; Wang L; Qian H; Qi X J Agric Food Chem; 2018 Jun; 66(24):6151-6161. PubMed ID: 29863868 [TBL] [Abstract][Full Text] [Related]
19. Ice Recrystallization Inhibition Is Insufficient to Explain Cryopreservation Abilities of Antifreeze Proteins. Sun Y; Maltseva D; Liu J; Hooker T; Mailänder V; Ramløv H; DeVries AL; Bonn M; Meister K Biomacromolecules; 2022 Mar; 23(3):1214-1220. PubMed ID: 35080878 [TBL] [Abstract][Full Text] [Related]
20. Rational, yet simple, design and synthesis of an antifreeze-protein inspired polymer for cellular cryopreservation. Mitchell DE; Cameron NR; Gibson MI Chem Commun (Camb); 2015 Aug; 51(65):12977-80. PubMed ID: 26176027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]