These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32718682)

  • 21. A simplified closed artificial ecosystem--recycling of organic matter into wheat plants.
    Lamotte L; Saugier B; Smernoff DT; Andre M
    Adv Space Res; 1999; 24(3):303-8. PubMed ID: 11542538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blue light requirements for crop plants used in bioregenerative life support systems.
    Yorio NC; Wheeler RM; Goins GD; Sanwo-Lewandowski MM; Mackowiak CL; Brown CS; Sager JC; Stutte GW
    Life Support Biosph Sci; 1998; 5(2):119-28. PubMed ID: 11541667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gas exchange characteristics of wheat stands grown in a closed, controlled environment.
    Wheeler RM; Corey KA; Sager JC; Knott WM
    Crop Sci; 1993; 33(1):161-8. PubMed ID: 11538198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.).
    Bishop DL; Bugbee BG
    J Plant Physiol; 1998 Nov; 153(5-6):558-65. PubMed ID: 11542674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BLSS: a contribution to future life support.
    Skoog AI
    Adv Space Res; 1984; 4(12):251-62. PubMed ID: 11537782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment.
    Tikhomirov AA; Ushakova SA; Manukovsky NS; Lisovsky GM; Kudenko YA; Kovalev VS; Gubanov VG; Barkhatov YV; Gribovskaya IV; Zolotukhin IG; Gros JB; Lasseur Ch
    Adv Space Res; 2003; 31(7):1711-20. PubMed ID: 14503509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato.
    Nelson M; Dempster WF; Silverstone S; Alling A; Allen JP; van Thillo M
    Adv Space Res; 2005; 35(9):1539-43. PubMed ID: 16175676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Element Cycling and Energy Flux Responses in Ecosystem Simulations Conducted at the Chinese Lunar Palace-1.
    Dong C; Fu Y; Xie B; Wang M; Liu H
    Astrobiology; 2017 Jan; 17(1):78-86. PubMed ID: 28068148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recycling nutrients from organic waste for growing higher plants in the Micro Ecological Life Support System Alternative (MELiSSA) loop during long-term space missions.
    Frossard E; Crain G; Giménez de Azcárate Bordóns I; Hirschvogel C; Oberson A; Paille C; Pellegri G; Udert KM
    Life Sci Space Res (Amst); 2024 Feb; 40():176-185. PubMed ID: 38245343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wheat response to differences in water and nutritional status between zeoponic and hydroponic growth systems.
    Steinberg SL; Ming DW; Henderson KE; Carrier C; Gruener JE; Barta DJ; Henninger DL
    Agron J; 2000; 92(2):353-60. PubMed ID: 11543523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transpiration during life cycle in controlled wheat growth.
    Volk T; Rummel JD
    Adv Space Res; 1989; 9(8):61-4. PubMed ID: 11537392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Study of the compatibility of certain higher plants and chlorella used as a bioregenerative human life support system].
    Shaĭdorov IuI; Shebalin BN; Meleshko GI
    Kosm Biol Aviakosm Med; 1980; 14(2):74-8. PubMed ID: 6104747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wheat Cultivation and Nutrient Control for the 180-day CELSS Integrated Experiment.
    Zhang N; Li J; Luo J; Yu Q; Ai W; Zhang L; Tang Y
    Life Sci Space Res (Amst); 2020 Aug; 26():46-54. PubMed ID: 32718686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.).
    Lian J; Wu J; Xiong H; Zeb A; Yang T; Su X; Su L; Liu W
    J Hazard Mater; 2020 Mar; 385():121620. PubMed ID: 31744724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developing a vitamin greenhouse for the life support system of the International Space Station and for future interplanetary missions.
    Berkovich YA; Krivobok NM; Sinyak YY; Smolyanina SO; Grigoriev YI; Romanov SY; Guissenberg AS
    Adv Space Res; 2004; 34(7):1552-7. PubMed ID: 15846885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system.
    Tikhomirov AA; Ushakova SA; Manukovsky NS; Lisovsky GM; Kudenko YA; Kovalev VS; Gribovskaya IV; Tirrannen LS; Zolotukhin IG; Gros JB; Lasseur Ch
    Acta Astronaut; 2003; 53(4-10):249-57. PubMed ID: 14649254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interface problems between material recycling systems and plants.
    Nitta K; Oguchi M; Otsubo K
    Adv Space Res; 1992; 12(5):11-9. PubMed ID: 11537056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mass balances for a biological life support system simulation model.
    Volk T; Rummel JD
    Adv Space Res; 1987; 7(4):141-8. PubMed ID: 11537263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of different light intensity on physiology, antioxidant capacity and photosynthetic characteristics on wheat seedlings under high CO
    Yi Z; Cui J; Fu Y; Liu H
    Photosynth Res; 2020 Apr; 144(1):23-34. PubMed ID: 32090305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incineration as a method for resource recovery from inedible biomass in a Controlled Ecological Life Support System.
    Bubenheim DL; Wignarajah K
    Life Support Biosph Sci; 1995; 1(3-4):129-40. PubMed ID: 11538585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.