BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32718689)

  • 1. Investigation of shielding material properties for effective space radiation protection.
    Naito M; Kodaira S; Ogawara R; Tobita K; Someya Y; Kusumoto T; Kusano H; Kitamura H; Koike M; Uchihori Y; Yamanaka M; Mikoshiba R; Endo T; Kiyono N; Hagiwara Y; Kodama H; Matsuo S; Takami Y; Sato T; Orimo SI
    Life Sci Space Res (Amst); 2020 Aug; 26():69-76. PubMed ID: 32718689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applicability of composite materials for space radiation shielding of spacecraft.
    Naito M; Kitamura H; Koike M; Kusano H; Kusumoto T; Uchihori Y; Endo T; Hagiwara Y; Kiyono N; Kodama H; Matsuo S; Mikoshiba R; Takami Y; Yamanaka M; Akiyama H; Nishimura W; Kodaira S
    Life Sci Space Res (Amst); 2021 Nov; 31():71-79. PubMed ID: 34689952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shielding effectiveness: A weighted figure of merit for space radiation shielding.
    DeWitt JM; Benton ER
    Appl Radiat Isot; 2020 Jul; 161():109141. PubMed ID: 32250841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose Attenuation in Innovative Shielding Materials for Radiation Protection in Space: Measurements and Simulations.
    Luoni F; Boscolo D; Fiore G; Bocchini L; Horst F; Reidel CA; Schuy C; Cipriani C; Binello A; Baricco M; Giraudo M; Santin G; Durante M; Weber U
    Radiat Res; 2022 Aug; 198(2):107-119. PubMed ID: 35930014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground-based simulations of cosmic ray heavy ion interactions in spacecraft and planetary habitat shielding materials.
    Miller J; Zeitlin C; Heilbronn L; Borak T; Carter T; Frankel KA; Fukumura A; Murakami T; Rademacher SE; Schimmerling W; Stronach C
    Acta Astronaut; 1998; 42(1-8):389-94. PubMed ID: 11541622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerator-based tests of radiation shielding properties of materials used in human space infrastructures.
    Lobascio C; Briccarello M; Destefanis R; Faraud M; Gialanella G; Grossi G; Guarnieri V; Manti L; Pugliese M; Rusek A; Scampoli P; Durante M
    Health Phys; 2008 Mar; 94(3):242-7. PubMed ID: 18301097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Considerations for practical dose equivalent assessment of space radiation and exposure risk reduction in deep space.
    Naito M; Kodaira S
    Sci Rep; 2022 Aug; 12(1):13617. PubMed ID: 35948565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary proton buildup in space radiation shielding.
    DeWitt JM; Benton ER
    Life Sci Space Res (Amst); 2024 May; 41():119-126. PubMed ID: 38670638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmark studies of the effectiveness of structural and internal materials as radiation shielding for the international space station.
    Miller J; Zeitlin C; Cucinotta FA; Heilbronn L; Stephens D; Wilson JW
    Radiat Res; 2003 Mar; 159(3):381-90. PubMed ID: 12600241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Assessment of Lithium Hydride's Space Radiation Shielding Performance and Monte Carlo Benchmarking.
    Schuy C; Tessa C; Horst F; Rovituso M; Durante M; Giraudo M; Bocchini L; Baricco M; Castellero A; Fioreh G; Weber U
    Radiat Res; 2019 Feb; 191(2):154-161. PubMed ID: 30499384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation shielding of spacecraft in manned interplanetary flights.
    Spillantini P; Taccetti F; Papini P; Rossi L
    Nucl Instrum Methods Phys Res A; 2000 Apr; 443(2-3):254-63. PubMed ID: 11543201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overview of secondary neutron production relevant to shielding in space.
    Heilbronn L; Nakamura T; Iwata Y; Kurosawa T; Iwase H; Townsend LW
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):140-3. PubMed ID: 16604615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Space radiation transport properties of polyethylene-based composites.
    Kaul RK; Barghouty AF; Dahche HM
    Ann N Y Acad Sci; 2004 Nov; 1027():138-49. PubMed ID: 15644352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of graphite, aluminum, and TransHab shielding material characteristics in a high-energy neutron field.
    Badhwar GD; Huff H; Wilkins R; Thibeault S
    Radiat Meas; 2002 Dec; 35(6):545-9. PubMed ID: 12455499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation environment created with GCRs inside a spacecraft.
    Dobynde MI; Shprits YY
    Life Sci Space Res (Amst); 2020 Feb; 24():116-121. PubMed ID: 31987475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shielding and fragmentation studies.
    Zeitlin C; Guetersloh S; Heilbronn L; Miller J
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):123-4. PubMed ID: 16604611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extensive study of depth dose distribution and projectile fragmentation cross-section for shielding materials using Geant4.
    Sangwan N; Kumar A
    Appl Radiat Isot; 2022 Feb; 180():110068. PubMed ID: 34923291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HETC radiation transport code development for cosmic ray shielding applications in space.
    Townsend LW; Miller TM; Gabriel TA
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):135-9. PubMed ID: 16604614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of the DNA-damage response to HZE particles by shielding.
    Mukherjee B; Camacho CV; Tomimatsu N; Miller J; Burma S
    DNA Repair (Amst); 2008 Oct; 7(10):1717-30. PubMed ID: 18672098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ICRP, 123. Assessment of radiation exposure of astronauts in space. ICRP Publication 123.
    ; Dietze G; Bartlett DT; Cool DA; Cucinotta FA; Jia X; McAulay IR; Pelliccioni M; Petrov V; Reitz G; Sato T
    Ann ICRP; 2013 Aug; 42(4):1-339. PubMed ID: 23958389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.