These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3271870)

  • 1. Oxidative metabolism of some hydrazine derivatives by rat liver and lung tissue fractions.
    Erikson JM; Prough RA
    J Biochem Toxicol; 1986 Mar; 1(1):41-52. PubMed ID: 3271870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mitochondrial metabolism of 1,2-disubstituted hydrazines, procarbazine and 1,2-dimethylhydrazine.
    Coomes MW; Prough RA
    Drug Metab Dispos; 1983; 11(6):550-5. PubMed ID: 6140138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interactions of hydrazine derivatives with rat-hepatic cytochrome P-450.
    Moloney SJ; Snider BJ; Prough RA
    Xenobiotica; 1984 Oct; 14(10):803-14. PubMed ID: 6506753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of free radical intermediates in the oxidative metabolism of carcinogenic hydrazine derivatives.
    Tomasi A; Albano E; Botti B; Vannini V
    Toxicol Pathol; 1987; 15(2):178-83. PubMed ID: 3039646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of the inhibition of rat liver monoamine oxidase types A and B by the acetylenic inhibitors clorgyline, l-deprenyl and pargyline.
    Fowler CJ; Mantle TJ; Tipton KF
    Biochem Pharmacol; 1982 Nov; 31(22):3555-61. PubMed ID: 6817759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro microsomal metabolism of hydrazine.
    Jenner AM; Timbrell JA
    Xenobiotica; 1995 Jun; 25(6):599-609. PubMed ID: 7483660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between cytosolic monoamine oxidase and spin-labeled amphetamine and its modification by clorgyline and pargyline.
    Copeland ES; Campbell IC; Murphy DL
    Biochim Biophys Acta; 1983 Feb; 743(1):186-94. PubMed ID: 6824699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of diltiazem. III. Oxidative deamination of diltiazem in rat liver microsomes.
    Nakamura S; Ito Y; Fukushima T; Sugawara Y; Ohashi M
    J Pharmacobiodyn; 1990 Oct; 13(10):612-21. PubMed ID: 2095401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of primaquine by liver homogenate fractions. Evidence for monoamine oxidase and cytochrome P450 involvement in the oxidative deamination of primaquine to carboxyprimaquine.
    Constantino L; Paixão P; Moreira R; Portela MJ; Do Rosario VE; Iley J
    Exp Toxicol Pathol; 1999 Jul; 51(4-5):299-303. PubMed ID: 10445386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-centered free radical formation during the metabolism of hydrazine derivatives by neutrophils.
    Gamberini M; Leite LC
    Biochem Pharmacol; 1993 May; 45(9):1913-9. PubMed ID: 8388211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible role of free radical intermediates in hepatotoxicity of hydrazine derivatives.
    Albano E; Goria-Gatti L; Clot P; Jannone A; Tomasi A
    Toxicol Ind Health; 1993; 9(3):529-38. PubMed ID: 8367892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin trapping of free radical intermediates produced during the metabolism of isoniazid and iproniazid in isolated hepatocytes.
    Albano E; Tomasi A
    Biochem Pharmacol; 1987 Sep; 36(18):2913-20. PubMed ID: 2820425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoniazid and iproniazid: activation of metabolites to toxic intermediates in man and rat.
    Nelson SD; Mitchell JR; Timbrell JA; Snodgrass WR; Corcoran GB
    Science; 1976 Sep; 193(4256):901-3. PubMed ID: 7838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major isozymes of rat liver microsomal cytochrome P-450 involved in the N-oxidation of N-isopropyl-alpha-(2-methylazo)-p-toluamide, the azo derivative of procarbazine.
    Prough RA; Brown MI; Dannan GA; Guengerich FP
    Cancer Res; 1984 Feb; 44(2):543-8. PubMed ID: 6692359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver I2 imidazoline-preferring receptors.
    Alemany R; Olmos G; García-Sevilla JA
    Br J Pharmacol; 1995 Feb; 114(4):837-45. PubMed ID: 7773544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P-450- and peroxidase-dependent activation of procarbazine and iproniazid in mammalian cells.
    Sinha BK
    Free Radic Res Commun; 1991; 15(4):189-95. PubMed ID: 1667771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-substituted cyclopropylamines as monoamine oxidase inhibitors. Structure-activity relationships. Dopa potentiation in mice and in vitro inhibition of kynuramine oxidation.
    Mills J; Kattau R; Slater IH; Fuller RW
    J Med Chem; 1968 Jan; 11(1):95-7. PubMed ID: 4384132
    [No Abstract]   [Full Text] [Related]  

  • 18. In vitro metabolism of the analgesic bicifadine in the mouse, rat, monkey, and human.
    Erickson DA; Hollfelder S; Tenge J; Gohdes M; Burkhardt JJ; Krieter PA
    Drug Metab Dispos; 2007 Dec; 35(12):2232-41. PubMed ID: 17881661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of monoamine oxidase concentrations in rat liver by inhibitor binding.
    Gomez N; Unzeta M; Tipton KF; Anderson MC; O'Carroll AM
    Biochem Pharmacol; 1986 Dec; 35(24):4467-72. PubMed ID: 3790166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of mitochondrial monoamine oxidase of the rat uterus and liver by clorglyine, pargyline and harmine.
    Grosso DS; Gawienowski AM
    Biochem Pharmacol; 1976 Apr; 25(8):957-61. PubMed ID: 178322
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.