These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32719313)

  • 1. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions.
    Matthews E; Johnson MS; Genovese V; Du J; Bastviken D
    Sci Rep; 2020 Jul; 10(1):12465. PubMed ID: 32719313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane Emission From Global Lakes: New Spatiotemporal Data and Observation-Driven Modeling of Methane Dynamics Indicates Lower Emissions.
    Johnson MS; Matthews E; Du J; Genovese V; Bastviken D
    J Geophys Res Biogeosci; 2022 Jul; 127(7):e2022JG006793. PubMed ID: 36250198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane bubbling from northern lakes: present and future contributions to the global methane budget.
    Walter KM; Smith LC; Chapin FS
    Philos Trans A Math Phys Eng Sci; 2007 Jul; 365(1856):1657-76. PubMed ID: 17513268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The significant contribution of lake depth in regulating global lake diffusive methane emissions.
    Li M; Peng C; Zhu Q; Zhou X; Yang G; Song X; Zhang K
    Water Res; 2020 Apr; 172():115465. PubMed ID: 31972411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interannual, summer, and diel variability of CH
    Eugster W; DelSontro T; Shaver GR; Kling GW
    Environ Sci Process Impacts; 2020 Nov; 22(11):2181-2198. PubMed ID: 33078814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant methane ebullition from large shallow eutrophic lakes of the semi-arid region of northern China.
    Zhang L; Li X; Yu R; Geng Y; Sun L; Sun H; Li Y; Zhang Z; Zhang X; Lei X; Wang R; Lu C; Lu X
    J Environ Manage; 2023 Dec; 347():119093. PubMed ID: 37783080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.
    Rasilo T; Prairie YT; Del Giorgio PA
    Glob Chang Biol; 2015 Mar; 21(3):1124-39. PubMed ID: 25220765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming.
    Walter KM; Zimov SA; Chanton JP; Verbyla D; Chapin FS
    Nature; 2006 Sep; 443(7107):71-5. PubMed ID: 16957728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Much stronger tundra methane emissions during autumn freeze than spring thaw.
    Bao T; Xu X; Jia G; Billesbach DP; Sullivan RC
    Glob Chang Biol; 2021 Jan; 27(2):376-387. PubMed ID: 33118303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High methane emissions from thermokarst lakes on the Tibetan Plateau are largely attributed to ebullition fluxes.
    Wang L; Du Z; Wei Z; Xu Q; Feng Y; Lin P; Lin J; Chen S; Qiao Y; Shi J; Xiao C
    Sci Total Environ; 2021 Dec; 801():149692. PubMed ID: 34428650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of stable carbon isotopic signature of methane and ebullitive fluxes in northern temperate lakes.
    Thottathil SD; Prairie YT
    Sci Total Environ; 2021 Jul; 777():146117. PubMed ID: 33689901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods.
    Fusé VS; Priano ME; Williams KE; Gere JI; Guzmán SA; Gratton R; Juliarena MP
    Environ Monit Assess; 2016 Oct; 188(10):590. PubMed ID: 27670888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of winter to the annual CH4 emission from a eutrophied boreal lake.
    Huttunen JT; Alm J; Saarijärvi E; Lappalainen KM; Silvola J; Martikainen PJ
    Chemosphere; 2003 Jan; 50(2):247-50. PubMed ID: 12653296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial-temporal variability of methane fluxes in lakes varying in latitude, area, and depth.
    Li L; Xue B
    Heliyon; 2023 Aug; 9(8):e18411. PubMed ID: 37554827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size does matter: importance of large bubbles and small-scale hot spots for methane transport.
    DelSontro T; McGinnis DF; Wehrli B; Ostrovsky I
    Environ Sci Technol; 2015 Feb; 49(3):1268-76. PubMed ID: 25551318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is ebullition or diffusion more important as methane emission pathway in a shallow subsaline lake?
    Baur PA; Henry Pinilla D; Glatzel S
    Sci Total Environ; 2024 Feb; 912():169112. PubMed ID: 38072262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane ebullition fluxes and temperature sensitivity in a shallow lake.
    Xun F; Feng M; Ma S; Chen H; Zhang W; Mao Z; Zhou Y; Xiao Q; Wu QL; Xing P
    Sci Total Environ; 2024 Feb; 912():169589. PubMed ID: 38151123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions.
    Wang G; Xia X; Liu S; Zhang L; Zhang S; Wang J; Xi N; Zhang Q
    Water Res; 2021 Feb; 189():116654. PubMed ID: 33242789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autochthonous dissolved organic matter potentially fuels methane ebullition from experimental lakes.
    Zhou Y; Zhou L; Zhang Y; Garcia de Souza J; Podgorski DC; Spencer RGM; Jeppesen E; Davidson TA
    Water Res; 2019 Dec; 166():115048. PubMed ID: 31518733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Method for the Quantification of Methane Concentrations in Unconsolidated Lake Sediments.
    Tyroller L; Tomonaga Y; Brennwald MS; Ndayisaba C; Naeher S; Schubert C; North RP; Kipfer R
    Environ Sci Technol; 2016 Jul; 50(13):7047-55. PubMed ID: 27244276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.