These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32719558)

  • 1. Enzymatic C-H activation of aromatic compounds through CO
    Aleku GA; Saaret A; Bradshaw-Allen RT; Derrington SR; Titchiner GR; Gostimskaya I; Gahloth D; Parker DA; Hay S; Leys D
    Nat Chem Biol; 2020 Nov; 16(11):1255-1260. PubMed ID: 32719558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-H Carboxylation of Aromatic Compounds through CO
    Luo J; Larrosa I
    ChemSusChem; 2017 Sep; 10(17):3317-3332. PubMed ID: 28722818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into UbiD reversible decarboxylation.
    Roberts GW; Leys D
    Curr Opin Struct Biol; 2022 Aug; 75():102432. PubMed ID: 35843126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UbiD domain dynamics underpins aromatic decarboxylation.
    Marshall SA; Payne KAP; Fisher K; Titchiner GR; Levy C; Hay S; Leys D
    Nat Commun; 2021 Aug; 12(1):5065. PubMed ID: 34417452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-catalyzed, highly regioselective synthesis of α-aryl carboxylic acids from styrene derivatives and CO2.
    Greenhalgh MD; Thomas SP
    J Am Chem Soc; 2012 Jul; 134(29):11900-3. PubMed ID: 22779807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Enzyme-Catalyzed CO
    Aleku GA; Roberts GW; Titchiner GR; Leys D
    ChemSusChem; 2021 Apr; 14(8):1781-1804. PubMed ID: 33631048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition.
    Payne KA; White MD; Fisher K; Khara B; Bailey SS; Parker D; Rattray NJ; Trivedi DK; Goodacre R; Beveridge R; Barran P; Rigby SE; Scrutton NS; Hay S; Leys D
    Nature; 2015 Jun; 522(7557):497-501. PubMed ID: 26083754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of prenylated FMN-dependent Fdc supports efficient in vivo isobutene production.
    Saaret A; Villiers B; Stricher F; Anissimova M; Cadillon M; Spiess R; Hay S; Leys D
    Nat Commun; 2021 Sep; 12(1):5300. PubMed ID: 34489427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae.
    Bhuiya MW; Lee SG; Jez JM; Yu O
    Appl Environ Microbiol; 2015 Jun; 81(12):4216-23. PubMed ID: 25862228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic biodegradation of aromatic compounds.
    Jothimani P; Kalaichelvan G; Bhaskaran A; Selvaseelan DA; Ramasamy K
    Indian J Exp Biol; 2003 Sep; 41(9):1046-67. PubMed ID: 15242297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase.
    Lin F; Ferguson KL; Boyer DR; Lin XN; Marsh EN
    ACS Chem Biol; 2015 Apr; 10(4):1137-44. PubMed ID: 25647642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons.
    Mouttaki H; Johannes J; Meckenstock RU
    Environ Microbiol; 2012 Oct; 14(10):2770-4. PubMed ID: 22564331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative Cooperativity in the Mechanism of Prenylated-Flavin-Dependent Ferulic Acid Decarboxylase: A Proposal for a "Two-Stroke" Decarboxylation Cycle.
    Kaneshiro AK; Datar PM; Marsh ENG
    Biochemistry; 2023 Jan; 62(1):53-61. PubMed ID: 36521056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surveying the scope of aromatic decarboxylations catalyzed by prenylated-flavin dependent enzymes.
    Mondal A; Roy P; Carrannanto J; Datar PM; DiRocco DJ; Hunter K; Marsh ENG
    Faraday Discuss; 2024 Jun; ():. PubMed ID: 38837123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic enantioselective decarboxylative protonation of heteroaryl malonates.
    Lewin R; Goodall M; Thompson ML; Leigh J; Breuer M; Baldenius K; Micklefield J
    Chemistry; 2015 Apr; 21(17):6557-63. PubMed ID: 25766433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prenylated flavins: structures and mechanisms.
    Bloor S; Michurin I; Titchiner GR; Leys D
    FEBS J; 2023 May; 290(9):2232-2245. PubMed ID: 35073609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and biochemical characterization of the prenylated flavin mononucleotide-dependent indole-3-carboxylic acid decarboxylase.
    Gahloth D; Fisher K; Payne KAP; Cliff M; Levy C; Leys D
    J Biol Chem; 2022 Apr; 298(4):101771. PubMed ID: 35218772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Biological Route to Conjugated Alkenes: Microbial Production of Hepta-1,3,5-triene.
    Messiha HL; Payne KAP; Scrutton NS; Leys D
    ACS Synth Biol; 2021 Feb; 10(2):228-235. PubMed ID: 33535752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Characterization of a Novel Member of the Amidohydrolase 2 Protein Family, 2-Hydroxy-1-Naphthoic Acid Nonoxidative Decarboxylase from Burkholderia sp. Strain BC1.
    Pal Chowdhury P; Basu S; Dutta A; Dutta TK
    J Bacteriol; 2016 Jun; 198(12):1755-1763. PubMed ID: 27068590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver-catalyzed arylation of (hetero)arenes by oxidative decarboxylation of aromatic carboxylic acids.
    Kan J; Huang S; Lin J; Zhang M; Su W
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2199-203. PubMed ID: 25537369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.