These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 32720441)

  • 21. Electronic properties of four typical zigzag-edged graphyne nanoribbons.
    Yu G; Liu Z; Gao W; Zheng Y
    J Phys Condens Matter; 2013 Jul; 25(28):285502. PubMed ID: 23793076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Width-Tuned Magnetic Order Oscillation on Zigzag Edges of Honeycomb Nanoribbons.
    Chen WC; Zhou Y; Yu SL; Yin WG; Gong CD
    Nano Lett; 2017 Jul; 17(7):4400-4404. PubMed ID: 28648082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New advances in nanographene chemistry.
    Narita A; Wang XY; Feng X; Müllen K
    Chem Soc Rev; 2015 Sep; 44(18):6616-43. PubMed ID: 26186682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Edge Disorder in Bottom-Up Zigzag Graphene Nanoribbons: Implications for Magnetism and Quantum Electronic Transport.
    Pizzochero M; Barin GB; Čerņevičs KN; Wang S; Ruffieux P; Fasel R; Yazyev OV
    J Phys Chem Lett; 2021 May; 12(19):4692-4696. PubMed ID: 33979153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topological Phases in Cove-Edged and Chevron Graphene Nanoribbons: Geometric Structures, [Formula: see text]
    Lee YL; Zhao F; Cao T; Ihm J; Louie SG
    Nano Lett; 2018 Nov; 18(11):7247-7253. PubMed ID: 30251545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-principles study of line-defect-embedded zigzag graphene nanoribbons: electronic and magnetic properties.
    Guan Z; Si C; Hu S; Duan W
    Phys Chem Chem Phys; 2016 Apr; 18(17):12350-6. PubMed ID: 27087060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On-Surface Synthesis of Carbon Nanostructures.
    Sun Q; Zhang R; Qiu J; Liu R; Xu W
    Adv Mater; 2018 Apr; 30(17):e1705630. PubMed ID: 29513368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Giant edge state splitting at atomically precise graphene zigzag edges.
    Wang S; Talirz L; Pignedoli CA; Feng X; Müllen K; Fasel R; Ruffieux P
    Nat Commun; 2016 May; 7():11507. PubMed ID: 27181701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis.
    Chen L; Hernandez Y; Feng X; Müllen K
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7640-54. PubMed ID: 22777811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Edge State Engineering of Graphene Nanoribbons.
    Su X; Xue Z; Li G; Yu P
    Nano Lett; 2018 Sep; 18(9):5744-5751. PubMed ID: 30111118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning spin polarization and spin transport of zigzag graphene nanoribbons by line defects.
    Tang GP; Zhang ZH; Deng XQ; Fan ZQ; Zhu HL
    Phys Chem Chem Phys; 2015 Jan; 17(1):638-43. PubMed ID: 25407715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collective Quantum Magnetism in Nitrogen-Doped Nanographenes.
    Zhu G; Jiang Y; Wang Y; Wang BX; Zheng Y; Liu Y; Kang LX; Li Z; Guan D; Li Y; Zheng H; Liu C; Jia J; Lin T; Liu PN; Li DY; Wang S
    J Am Chem Soc; 2023 Apr; 145(13):7136-7146. PubMed ID: 36951172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetism of Topological Boundary States Induced by Boron Substitution in Graphene Nanoribbons.
    Friedrich N; Brandimarte P; Li J; Saito S; Yamaguchi S; Pozo I; Peña D; Frederiksen T; Garcia-Lekue A; Sánchez-Portal D; Pascual JI
    Phys Rev Lett; 2020 Oct; 125(14):146801. PubMed ID: 33064521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spiers Memorial Lecture. Carbon nanostructures by macromolecular design - from branched polyphenylenes to nanographenes and graphene nanoribbons.
    Qiu Z; Narita A; Müllen K
    Faraday Discuss; 2021 Apr; 227():8-45. PubMed ID: 33290471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes.
    Treier M; Pignedoli CA; Laino T; Rieger R; Müllen K; Passerone D; Fasel R
    Nat Chem; 2011 Jan; 3(1):61-7. PubMed ID: 21160519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications.
    Yano Y; Mitoma N; Ito H; Itami K
    J Org Chem; 2020 Jan; 85(1):4-33. PubMed ID: 31789025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tailoring Bond Topologies in Open-Shell Graphene Nanostructures.
    Mishra S; Lohr TG; Pignedoli CA; Liu J; Berger R; Urgel JI; Müllen K; Feng X; Ruffieux P; Fasel R
    ACS Nano; 2018 Dec; 12(12):11917-11927. PubMed ID: 30395436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.
    Fan Q; Gottfried JM; Zhu J
    Acc Chem Res; 2015 Aug; 48(8):2484-94. PubMed ID: 26194462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons.
    Tan YZ; Yang B; Parvez K; Narita A; Osella S; Beljonne D; Feng X; Müllen K
    Nat Commun; 2013; 4():2646. PubMed ID: 24212200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.