BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32720654)

  • 1. Correction: 4D synchrotron microtomography and pore-network modelling for direct in situ capillary flow visualization in 3D printed microfluidic channels.
    Piovesan A; Van De Looverbosch T; Verboven P; Achille C; Parra Cabrera C; Boller E; Cheng Y; Ameloot R; Nicolai B
    Lab Chip; 2020 Aug; 20(16):3060. PubMed ID: 32720654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4D synchrotron microtomography and pore-network modelling for direct in situ capillary flow visualization in 3D printed microfluidic channels.
    Piovesan A; Van De Looverbosch T; Verboven P; Achille C; Parra Cabrera C; Boller E; Cheng Y; Ameloot R; Nicolai B
    Lab Chip; 2020 Jun; 20(13):2403-2411. PubMed ID: 32514512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips via commercial 3D-printers.
    Yin P; Zhao L; Chen Z; Jiao Z; Shi H; Hu B; Yuan S; Tian J
    Soft Matter; 2020 Mar; 16(12):3096-3105. PubMed ID: 32149313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels.
    Parekh DP; Ladd C; Panich L; Moussa K; Dickey MD
    Lab Chip; 2016 May; 16(10):1812-20. PubMed ID: 27025537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallisation in basaltic magmas revealed via in situ 4D synchrotron X-ray microtomography.
    Polacci M; Arzilli F; La Spina G; Le Gall N; Cai B; Hartley ME; Di Genova D; Vo NT; Nonni S; Atwood RC; Llewellin EW; Lee PD; Burton MR
    Sci Rep; 2018 May; 8(1):8377. PubMed ID: 29849174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction: Direct laser writing-enabled 3D printing strategies for microfluidic applications.
    Young OM; Xu X; Sarker S; Sochol RD
    Lab Chip; 2024 Apr; 24(9):2590. PubMed ID: 38647182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
    Beauchamp MJ; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printed Lego
    Nie J; Gao Q; Qiu JJ; Sun M; Liu A; Shao L; Fu JZ; Zhao P; He Y
    Biofabrication; 2018 Mar; 10(3):035001. PubMed ID: 29417931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retraction: A new polymer lab-on-a-chip (LOC) based on a microfluidic capillary flow assay (MCFA) for detecting unbound cortisol in saliva.
    U VT; Ghosh S; Milleman A; Nguyen T; Ahn CH
    Lab Chip; 2023 Oct; 23(20):4610. PubMed ID: 37767986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore network model for permeability characterization of three-dimensionally-printed porous materials for passive microfluidics.
    Piovesan A; Achille C; Ameloot R; Nicolai B; Verboven P
    Phys Rev E; 2019 Mar; 99(3-1):033107. PubMed ID: 30999407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water.
    Lee S; Thio SK; Park SY; Bae S
    Harmful Algae; 2019 Sep; 88():101638. PubMed ID: 31582154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction: Low-cost rapid prototyping and assembly of an open microfluidic device for a 3D vascularized organ-on-a-chip.
    Li Q; Niu K; Wang D; Xuan L; Wang X
    Lab Chip; 2022 Jul; 22(15):2911. PubMed ID: 35837998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction: 3D printed nervous system on a chip.
    Johnson BN; Lancaster KZ; Hogue IB; Meng F; Kong YL; Enquist LW; McAlpine MC
    Lab Chip; 2016 May; 16(10):1946. PubMed ID: 27090610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed LED based on-capillary detector housing with integrated slit.
    Cecil F; Zhang M; Guijt RM; Henderson A; Nesterenko PN; Paull B; Breadmore MC; Macka M
    Anal Chim Acta; 2017 May; 965():131-136. PubMed ID: 28366210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing.
    Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P
    ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D/4D analyses of damage and fracture behaviours in structural materials via synchrotron X-ray tomography.
    Toda H
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i3-i4. PubMed ID: 25359829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic flow-through reactor and 3D Raman imaging for in situ assessment of mineral reactivity in porous and fractured porous media.
    Poonoosamy J; Soulaine C; Burmeister A; Deissmann G; Bosbach D; Roman S
    Lab Chip; 2020 Jul; 20(14):2562-2571. PubMed ID: 32573607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.