These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32721056)

  • 41. Transition-metal-catalyzed asymmetric allylic dearomatization reactions.
    Zhuo CX; Zheng C; You SL
    Acc Chem Res; 2014 Aug; 47(8):2558-73. PubMed ID: 24940612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental and computational studies on the [3,3]- and [3,5]-sigmatropic rearrangements of acetoxycyclohexadienones: a non-ionic mechanism for acyl migration.
    Sharma S; Rajale T; Cordes DB; Hung-Low F; Birney DM
    J Am Chem Soc; 2013 Sep; 135(38):14438-47. PubMed ID: 23968489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temperature-controlled redox-neutral ruthenium(ii)-catalyzed regioselective allylation of benzamides with allylic acetates.
    Manikandan R; Jeganmohan M
    Org Biomol Chem; 2016 Aug; 14(32):7691-701. PubMed ID: 27456467
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sulfonium-aided coupling of aromatic rings via sigmatropic rearrangement.
    Yorimitsu H; Perry GJP
    Proc Jpn Acad Ser B Phys Biol Sci; 2022; 98(4):190-205. PubMed ID: 35400695
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of (-)-morphine: application of sequential Claisen/Claisen rearrangement of an allylic vicinal diol.
    Ichiki M; Tanimoto H; Miwa S; Saito R; Sato T; Chida N
    Chemistry; 2013 Jan; 19(1):264-9. PubMed ID: 23180383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Broadening the Scope of the Zwitterionic 1,3-Diaza-Claisen Rearrangement through a Tethering Strategy.
    Luedtke MW; Pisano J; Paquin L; Walker J; Madalengoitia JS
    J Org Chem; 2021 Jun; 86(12):8197-8215. PubMed ID: 34105974
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Palladium-pincer complex catalyzed C-C coupling of allyl nitriles with tosyl imines via regioselective allylic C-H bond functionalization.
    Aydin J; Szabó KJ
    Org Lett; 2008 Jul; 10(13):2881-4. PubMed ID: 18529065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nucleophilic ortho allylation of aryl and heteroaryl sulfoxides.
    Eberhart AJ; Imbriglio JE; Procter DJ
    Org Lett; 2011 Nov; 13(21):5882-5. PubMed ID: 21999481
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ruthenium-catalyzed C-H allylation of arenes with allylic amines.
    Yan R; Wang ZX
    Org Biomol Chem; 2018 May; 16(21):3961-3969. PubMed ID: 29756627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal and catalyzed [3,3]-phosphorimidate rearrangements.
    Chen B; Mapp AK
    J Am Chem Soc; 2005 May; 127(18):6712-8. PubMed ID: 15869293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trans and cis influences in hypervalent iodine(III) complexes: a DFT study.
    Sajith PK; Suresh CH
    Inorg Chem; 2013 May; 52(10):6046-54. PubMed ID: 23683291
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regio- and stereoselective palladium-pincer complex catalyzed allylation of sulfonylimines with trifluoro(allyl)borates and allylstannanes: a combined experimental and theoretical study.
    Wallner OA; Szabó KJ
    Chemistry; 2006 Sep; 12(26):6976-83. PubMed ID: 16800008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclic aromatic systems with hypervalent centers.
    Minkin VI; Minyaev RM
    Chem Rev; 2001 May; 101(5):1247-65. PubMed ID: 11710220
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The anionic Fries rearrangement: a convenient route to ortho-functionalized aromatics.
    Korb M; Lang H
    Chem Soc Rev; 2019 May; 48(10):2829-2882. PubMed ID: 31066387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalytic C-H allylation and benzylation of pyrazoles.
    Bae S; Jang HL; Jung H; Joo JM
    J Org Chem; 2015 Jan; 80(1):690-7. PubMed ID: 25517925
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functionalized Cycloolefin Ligand as a Solution to
    Wang FY; Li YX; Jiao L
    J Am Chem Soc; 2023 Mar; 145(8):4871-4881. PubMed ID: 36795897
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Overcoming Kinetic and Thermodynamic Challenges of Classic Cope Rearrangements.
    Fereyduni E; Lahtigui O; Sanders JN; Tomiczek BM; Mannchen MD; Yu RA; Houk KN; Grenning AJ
    J Org Chem; 2021 Feb; 86(3):2632-2643. PubMed ID: 33476142
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Kerim MD; Katsina T; Cattoen M; Fincias N; Arseniyadis S; El Kaïm L
    J Org Chem; 2020 Oct; 85(19):12514-12525. PubMed ID: 32845144
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics.
    Rotstein BH; Stephenson NA; Vasdev N; Liang SH
    Nat Commun; 2014 Jul; 5():4365. PubMed ID: 25007318
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toward Efficient and Stereoselective Aromatic and Dearomative Cope Rearrangements: Experimental and Theoretical Investigations of α-Allyl-α'-Aromatic γ-Lactone Derivatives.
    Mando M; Grellepois F; Blanc A; Hénon E; Riguet E
    Chemistry; 2024 Apr; 30(21):e202304138. PubMed ID: 38284279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.