These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 3272146)
1. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Westhof E; Dumas P; Moras D Acta Crystallogr A; 1988 Mar; 44 ( Pt 2)():112-23. PubMed ID: 3272146 [TBL] [Abstract][Full Text] [Related]
2. The structure of yeast tRNA(Asp). A model for tRNA interacting with messenger RNA. Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R J Biomol Struct Dyn; 1985 Dec; 3(3):479-93. PubMed ID: 3917033 [TBL] [Abstract][Full Text] [Related]
3. Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp). Przykorska A; el Adlouni C; Keith G; Szarkowski JW; Dirheimer G Nucleic Acids Res; 1992 Feb; 20(4):659-63. PubMed ID: 1542562 [TBL] [Abstract][Full Text] [Related]
4. Analysis of sequence dependent variations in secondary and tertiary structure of tRNA molecules. Bhattacharyya D; Bansal M J Biomol Struct Dyn; 1994 Jun; 11(6):1251-75. PubMed ID: 7946073 [TBL] [Abstract][Full Text] [Related]
5. Crystallographic refinement of yeast aspartic acid transfer RNA. Westhof E; Dumas P; Moras D J Mol Biol; 1985 Jul; 184(1):119-45. PubMed ID: 3897553 [TBL] [Abstract][Full Text] [Related]
6. Loop stereochemistry and dynamics in transfer RNA. Westhof E; Dumas P; Moras D J Biomol Struct Dyn; 1983 Oct; 1(2):337-55. PubMed ID: 6401114 [TBL] [Abstract][Full Text] [Related]
7. Aminoacyl-tRNA synthetase and U54 methyltransferase recognize conformations of the yeast tRNA(Phe) anticodon and T stem/loop domain. Guenther RH; Bakal RS; Forrest B; Chen Y; Sengupta R; Nawrot B; Sochacka E; Jankowska J; Kraszewski A; Malkiewicz A Biochimie; 1994; 76(12):1143-51. PubMed ID: 7748949 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases. Romby P; Moras D; Dumas P; Ebel JP; Giegé R J Mol Biol; 1987 May; 195(1):193-204. PubMed ID: 3309332 [TBL] [Abstract][Full Text] [Related]
9. Probing the anticodon loop structure in yeast tRNA(Phe-Y) with single strand-specific nuclease S1. Marciniec T; Ciesiołka J; Krzyzosiak W Acta Biochim Pol; 1989; 36(2):123-30. PubMed ID: 2618244 [TBL] [Abstract][Full Text] [Related]
10. tRNA prefers to kiss. Scarabino D; Crisari A; Lorenzini S; Williams K; Tocchini-Valentini GP EMBO J; 1999 Aug; 18(16):4571-8. PubMed ID: 10449422 [TBL] [Abstract][Full Text] [Related]
11. The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs. Dao V; Guenther RH; Agris PF Biochemistry; 1992 Nov; 31(45):11012-9. PubMed ID: 1445839 [TBL] [Abstract][Full Text] [Related]
12. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe). Cabello-Villegas J; Winkler ME; Nikonowicz EP J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344 [TBL] [Abstract][Full Text] [Related]
13. Footprinting evidence for close contacts of the yeast tRNA(Asp) anticodon region with aspartyl-tRNA synthetase. Garcia A; Giege R Biochem Biophys Res Commun; 1992 Jul; 186(2):956-62. PubMed ID: 1497679 [TBL] [Abstract][Full Text] [Related]
14. Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe). Stuart JW; Koshlap KM; Guenther R; Agris PF J Mol Biol; 2003 Dec; 334(5):901-18. PubMed ID: 14643656 [TBL] [Abstract][Full Text] [Related]
15. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Sauter C; Lorber B; Cavarelli J; Moras D; Giegé R J Mol Biol; 2000 Jun; 299(5):1313-24. PubMed ID: 10873455 [TBL] [Abstract][Full Text] [Related]
16. Recognition of tertiary structure in tRNAs by Rh(phen)2phi3+, a new reagent for RNA structure-function mapping. Chow CS; Behlen LS; Uhlenbeck OC; Barton JK Biochemistry; 1992 Feb; 31(4):972-82. PubMed ID: 1734973 [TBL] [Abstract][Full Text] [Related]
17. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs. Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931 [TBL] [Abstract][Full Text] [Related]
18. Conformational flexibility of tRNA: structural changes in yeast tRNA(Asp) upon binding to aspartyl-tRNA synthetase. Rees B; Cavarelli J; Moras D Biochimie; 1996; 78(7):624-31. PubMed ID: 8955905 [TBL] [Abstract][Full Text] [Related]
19. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Westhof E; Sundaralingam M Biochemistry; 1986 Aug; 25(17):4868-78. PubMed ID: 3533142 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Krzyzosiak WJ; Marciniec T; Wiewiorowski M; Romby P; Ebel JP; Giegé R Biochemistry; 1988 Jul; 27(15):5771-7. PubMed ID: 3179275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]