BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 32721582)

  • 1. Endpoint prediction of heart failure using electronic health records.
    Chu J; Dong W; Huang Z
    J Biomed Inform; 2020 Sep; 109():103518. PubMed ID: 32721582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment effect prediction with adversarial deep learning using electronic health records.
    Chu J; Dong W; Wang J; He K; Huang Z
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 4):139. PubMed ID: 33317502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation learning for clinical time series prediction tasks in electronic health records.
    Ruan T; Lei L; Zhou Y; Zhai J; Zhang L; He P; Gao J
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 8):259. PubMed ID: 31842854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent disease progression networks for modelling risk trajectory of heart failure.
    Lu XH; Liu A; Fuh SC; Lian Y; Guo L; Yang Y; Marelli A; Li Y
    PLoS One; 2021; 16(1):e0245177. PubMed ID: 33406155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LSTM Model for Prediction of Heart Failure in Big Data.
    Maragatham G; Devi S
    J Med Syst; 2019 Mar; 43(5):111. PubMed ID: 30888519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using recurrent neural network models for early detection of heart failure onset.
    Choi E; Schuetz A; Stewart WF; Sun J
    J Am Med Inform Assoc; 2017 Mar; 24(2):361-370. PubMed ID: 27521897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep representation learning for individualized treatment effect estimation using electronic health records.
    Chen P; Dong W; Lu X; Kaymak U; He K; Huang Z
    J Biomed Inform; 2019 Dec; 100():103303. PubMed ID: 31610264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recurrent Neural Networks for Early Detection of Heart Failure From Longitudinal Electronic Health Record Data: Implications for Temporal Modeling With Respect to Time Before Diagnosis, Data Density, Data Quantity, and Data Type.
    Chen R; Stewart WF; Sun J; Ng K; Yan X
    Circ Cardiovasc Qual Outcomes; 2019 Oct; 12(10):e005114. PubMed ID: 31610714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural networks versus Logistic regression for 30 days all-cause readmission prediction.
    Allam A; Nagy M; Thoma G; Krauthammer M
    Sci Rep; 2019 Jun; 9(1):9277. PubMed ID: 31243311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death.
    Awan SE; Bennamoun M; Sohel F; Sanfilippo FM; Chow BJ; Dwivedi G
    PLoS One; 2019; 14(6):e0218760. PubMed ID: 31242238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Clinical Event Prediction in Patient Treatment Trajectory Using Longitudinal Electronic Health Records.
    Duan H; Sun Z; Dong W; He K; Huang Z
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):2053-2063. PubMed ID: 31880572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Readmission prediction via deep contextual embedding of clinical concepts.
    Xiao C; Ma T; Dieng AB; Blei DM; Wang F
    PLoS One; 2018; 13(4):e0195024. PubMed ID: 29630604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning-Driven Models to Predict Prognostic Outcomes in Patients Hospitalized With Heart Failure Using Electronic Health Records: Retrospective Study.
    Lv H; Yang X; Wang B; Wang S; Du X; Tan Q; Hao Z; Liu Y; Yan J; Xia Y
    J Med Internet Res; 2021 Apr; 23(4):e24996. PubMed ID: 33871375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AdaDiag: Adversarial Domain Adaptation of Diagnostic Prediction with Clinical Event Sequences.
    Zhang T; Chen M; Bui AAT
    J Biomed Inform; 2022 Oct; 134():104168. PubMed ID: 35987449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining structured and unstructured data for predictive models: a deep learning approach.
    Zhang D; Yin C; Zeng J; Yuan X; Zhang P
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):280. PubMed ID: 33121479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation learning in intraoperative vital signs for heart failure risk prediction.
    Chen Y; Qi B
    BMC Med Inform Decis Mak; 2019 Dec; 19(1):260. PubMed ID: 31818298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weight-based multiple empirical kernel learning with neighbor discriminant constraint for heart failure mortality prediction.
    Wang Z; Wang B; Zhou Y; Li D; Yin Y
    J Biomed Inform; 2020 Jan; 101():103340. PubMed ID: 31756495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adversarial MACE Prediction After Acute Coronary Syndrome Using Electronic Health Records.
    Huang Z; Dong W
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):2117-2126. PubMed ID: 30475735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting incident heart failure from population-based nationwide electronic health records: protocol for a model development and validation study.
    Nakao YM; Nadarajah R; Shuweihdi F; Nakao K; Fuat A; Moore J; Bates C; Wu J; Gale C
    BMJ Open; 2024 Jan; 14(1):e073455. PubMed ID: 38253453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.