BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32722034)

  • 1. Improving the Functional Activities of Curcumin Using Milk Proteins as Nanocarriers.
    Taha S; El-Sherbiny I; Enomoto T; Salem A; Nagai E; Askar A; Abady G; Abdel-Hamid M
    Foods; 2020 Jul; 9(8):. PubMed ID: 32722034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of curcumin-loaded gemini surfactant nanoparticles: Synthesis, characterization and evaluation of anticancer activity against human breast cancer cell lines.
    Karimpour M; Feizi MAH; Mahdavi M; Krammer B; Verwanger T; Najafi F; Babaei E
    Phytomedicine; 2019 Apr; 57():183-190. PubMed ID: 30776589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities.
    Yen FL; Wu TH; Tzeng CW; Lin LT; Lin CC
    J Agric Food Chem; 2010 Jun; 58(12):7376-82. PubMed ID: 20486686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chymotrypsin selectively digests β-lactoglobulin in whey protein isolate away from enzyme optimal conditions: potential for native α-lactalbumin purification.
    Lisak K; Toro-Sierra J; Kulozik U; Božanić R; Cheison SC
    J Dairy Res; 2013 Feb; 80(1):14-20. PubMed ID: 23317562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High pressure-induced denaturation of alpha-lactalbumin and beta-lactoglobulin in bovine milk and whey: a possible mechanism.
    Huppertz T; Fox PF; Kelly AL
    J Dairy Res; 2004 Nov; 71(4):489-95. PubMed ID: 15605716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin.
    Chen S; Wu J; Tang Q; Xu C; Huang Y; Huang D; Luo F; Wu Y; Yan F; Weng Z; Wang S
    Carbohydr Polym; 2020 Jan; 228():115398. PubMed ID: 31635734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process steps for the preparation of purified fractions of alpha-lactalbumin and beta-lactoglobulin from whey protein concentrates.
    Gésan-Guiziou G; Daufin G; Timmer M; Allersma D; van der Horst C
    J Dairy Res; 1999 May; 66(2):225-36. PubMed ID: 10376243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gel Formation from Industrial Milk Whey Proteins under Hydrostatic Pressure: Effect of Hydrostatic Pressure and Protein Concentration.
    Kanno C; Mu TH; Hagiwara T; Ametani M; Azuma N
    J Agric Food Chem; 1998 Feb; 46(2):417-424. PubMed ID: 10554256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies.
    Chaurasia S; Chaubey P; Patel RR; Kumar N; Mishra B
    Drug Dev Ind Pharm; 2016; 42(5):694-700. PubMed ID: 26165247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption mechanism of whey-protein-delivered curcumin using Caco-2 cell monolayers.
    Li M; Cui J; Ngadi MO; Ma Y
    Food Chem; 2015 Aug; 180():48-54. PubMed ID: 25766800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability.
    Aditya NP; Yang H; Kim S; Ko S
    Colloids Surf B Biointerfaces; 2015 Mar; 127():114-21. PubMed ID: 25660094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curcumin nanoparticles: physicochemical fabrication, characterization, antioxidant, enzyme inhibition, molecular docking and simulation studies.
    Kanwal Q; Ahmed M; Hamza M; Ahmad M; Atiq-Ur-Rehman ; Yousaf N; Javaid A; Anwar A; Khan IH; Muddassar M
    RSC Adv; 2023 Jul; 13(32):22268-22280. PubMed ID: 37492507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whey protein concentrates and isolates: processing and functional properties.
    Morr CV; Ha EY
    Crit Rev Food Sci Nutr; 1993; 33(6):431-76. PubMed ID: 8216810
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Du Z; Liu J; Zhang H; Wu X; Zhang B; Chen Y; Liu B; Ding L; Xiao H; Zhang T
    J Agric Food Chem; 2019 Nov; 67(45):12511-12519. PubMed ID: 31626537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment and Purification of Casein Glycomacropeptide from Whey Protein Isolate Using Supercritical Carbon Dioxide Processing and Membrane Ultrafiltration.
    Bonnaillie LM; Qi P; Wickham E; Tomasula PM
    Foods; 2014 Jan; 3(1):94-109. PubMed ID: 28234306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of heat-induced aggregates of beta-lactoglobulin, alpha-lactalbumin and bovine serum albumin in a whey protein concentrate environment.
    Havea P; Singh H; Creamer LK
    J Dairy Res; 2001 Aug; 68(3):483-97. PubMed ID: 11694050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched α-lactalbumin and β-lactoglobulin food ingredients.
    Bonnaillie LM; Tomasula PM
    J Agric Food Chem; 2012 May; 60(20):5257-66. PubMed ID: 22559165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells.
    Patil S; Choudhary B; Rathore A; Roy K; Mahadik K
    Phytomedicine; 2015 Nov; 22(12):1103-11. PubMed ID: 26547533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin.
    Chaurasia S; Patel RR; Chaubey P; Kumar N; Khan G; Mishra B
    Carbohydr Polym; 2015 Oct; 130():9-17. PubMed ID: 26076595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotubular structures developed from whey-based α-lactalbumin fractions for food applications.
    Tarhan O; Harsa S
    Biotechnol Prog; 2014; 30(6):1301-10. PubMed ID: 25079253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.