These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 32722514)
1. TETRALEC, Artificial Tetrameric Lectins: A Tool to Screen Ligand and Pathogen Interactions. Achilli S; Monteiro JT; Serna S; Mayer-Lambertz S; Thépaut M; Le Roy A; Ebel C; Reichardt NC; Lepenies B; Fieschi F; Vivès C Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32722514 [TBL] [Abstract][Full Text] [Related]
2. A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. Mitchell DA; Fadden AJ; Drickamer K J Biol Chem; 2001 Aug; 276(31):28939-45. PubMed ID: 11384997 [TBL] [Abstract][Full Text] [Related]
3. Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans. Yabe R; Tateno H; Hirabayashi J FEBS J; 2010 Oct; 277(19):4010-26. PubMed ID: 20840590 [TBL] [Abstract][Full Text] [Related]
4. Solution NMR analyses of the C-type carbohydrate recognition domain of DC-SIGNR protein reveal different binding modes for HIV-derived oligosaccharides and smaller glycan fragments. Probert F; Whittaker SB; Crispin M; Mitchell DA; Dixon AM J Biol Chem; 2013 Aug; 288(31):22745-57. PubMed ID: 23788638 [TBL] [Abstract][Full Text] [Related]
5. From structure to function - Ligand recognition by myeloid C-type lectin receptors. Fischer S; Stegmann F; Gnanapragassam VS; Lepenies B Comput Struct Biotechnol J; 2022; 20():5790-5812. PubMed ID: 36382179 [TBL] [Abstract][Full Text] [Related]
6. Biological evaluation of multivalent lewis X-MGL-1 interactions. Eriksson M; Serna S; Maglinao M; Schlegel MK; Seeberger PH; Reichardt NC; Lepenies B Chembiochem; 2014 Apr; 15(6):844-51. PubMed ID: 24616167 [TBL] [Abstract][Full Text] [Related]
7. NMR evidence for oligosaccharide release from the dendritic-cell specific intercellular adhesion molecule 3-grabbing non-integrin-related (CLEC4M) carbohydrate recognition domain at low pH. Probert F; Mitchell DA; Dixon AM FEBS J; 2014 Aug; 281(16):3739-50. PubMed ID: 24976257 [TBL] [Abstract][Full Text] [Related]
8. Chemo-Enzymatic Synthesis of S. mansoni O-Glycans and Their Evaluation as Ligands for C-Type Lectin Receptors MGL, DC-SIGN, and DC-SIGNR. Pham J; Hernandez A; Cioce A; Achilli S; Goti G; Vivès C; Thepaut M; Bernardi A; Fieschi F; Reichardt NC Chemistry; 2020 Oct; 26(56):12818-12830. PubMed ID: 32939912 [TBL] [Abstract][Full Text] [Related]
9. C-Type Lectin Receptor (CLR)-Fc Fusion Proteins As Tools to Screen for Novel CLR/Bacteria Interactions: An Exemplary Study on Preselected Mayer S; Moeller R; Monteiro JT; Ellrott K; Josenhans C; Lepenies B Front Immunol; 2018; 9():213. PubMed ID: 29487596 [TBL] [Abstract][Full Text] [Related]
10. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation. Maglinao M; Eriksson M; Schlegel MK; Zimmermann S; Johannssen T; Götze S; Seeberger PH; Lepenies B J Control Release; 2014 Feb; 175():36-42. PubMed ID: 24368301 [TBL] [Abstract][Full Text] [Related]
11. The structure of DC-SIGNR with a portion of its repeat domain lends insights to modeling of the receptor tetramer. Snyder GA; Colonna M; Sun PD J Mol Biol; 2005 Apr; 347(5):979-89. PubMed ID: 15784257 [TBL] [Abstract][Full Text] [Related]
12. Targeting C-type lectin receptors with multivalent carbohydrate ligands. Lepenies B; Lee J; Sonkaria S Adv Drug Deliv Rev; 2013 Aug; 65(9):1271-81. PubMed ID: 23727341 [TBL] [Abstract][Full Text] [Related]
13. Autonomous tetramerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR. Yu QD; Oldring AP; Powlesland AS; Tso CK; Yang C; Drickamer K; Taylor ME J Mol Biol; 2009 Apr; 387(5):1075-80. PubMed ID: 19249311 [TBL] [Abstract][Full Text] [Related]
14. Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. Feinberg H; Guo Y; Mitchell DA; Drickamer K; Weis WI J Biol Chem; 2005 Jan; 280(2):1327-35. PubMed ID: 15509576 [TBL] [Abstract][Full Text] [Related]
15. Polyvalent Glycomimetic-Gold Nanoparticles Revealing Critical Roles of Glycan Display on Multivalent Lectin-Glycan Interaction Biophysics and Antiviral Properties. Ning X; Budhadev D; Pollastri S; Nehlmeier I; Kempf A; Manfield I; Turnbull WB; Pöhlmann S; Bernardi A; Li X; Guo Y; Zhou D JACS Au; 2024 Aug; 4(8):3295-3309. PubMed ID: 39211605 [TBL] [Abstract][Full Text] [Related]
16. Oligomerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR: Sequence variation and stability differences. Dos Santos Á; Hadjivasiliou A; Ossa F; Lim NK; Turgut A; Taylor ME; Drickamer K Protein Sci; 2017 Feb; 26(2):306-316. PubMed ID: 27859859 [TBL] [Abstract][Full Text] [Related]
18. Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Gupta B; Sadaria D; Warrier VU; Kirtonia A; Kant R; Awasthi A; Baligar P; Pal JK; Yuba E; Sethi G; Garg M; Gupta RK Semin Cancer Biol; 2022 May; 80():87-106. PubMed ID: 32068087 [TBL] [Abstract][Full Text] [Related]
19. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. Davis CW; Nguyen HY; Hanna SL; Sánchez MD; Doms RW; Pierson TC J Virol; 2006 Feb; 80(3):1290-301. PubMed ID: 16415006 [TBL] [Abstract][Full Text] [Related]
20. Impact of polymorphisms in the DC-SIGNR neck domain on the interaction with pathogens. Gramberg T; Zhu T; Chaipan C; Marzi A; Liu H; Wegele A; Andrus T; Hofmann H; Pöhlmann S Virology; 2006 Apr; 347(2):354-63. PubMed ID: 16413044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]