BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32722748)

  • 1. A Repertory of Rearrangements and the Loss of an Inverted Repeat Region in Passiflora Chloroplast Genomes.
    Cauz-Santos LA; da Costa ZP; Callot C; Cauet S; Zucchi MI; Bergès H; van den Berg C; Vieira MLC
    Genome Biol Evol; 2020 Oct; 12(10):1841-1857. PubMed ID: 32722748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba.
    Shrestha B; Weng ML; Theriot EC; Gilbert LE; Ruhlman TA; Krosnick SE; Jansen RK
    Mol Phylogenet Evol; 2019 Sep; 138():53-64. PubMed ID: 31129347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastome sequences of the subgenus Passiflora reveal highly divergent genes and specific evolutionary features.
    Pacheco TG; Lopes AS; Welter JF; Yotoko KSC; Otoni WC; Vieira LDN; Guerra MP; Nodari RO; Balsanelli E; Pedrosa FO; de Souza EM; Rogalski M
    Plant Mol Biol; 2020 Sep; 104(1-2):21-37. PubMed ID: 32533420
    [No Abstract]   [Full Text] [Related]  

  • 4. Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): evolution towards shorter intergenic spacers.
    Wu CS; Chaw SM
    Plant Biotechnol J; 2014 Apr; 12(3):344-53. PubMed ID: 24283260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chloroplast Genome of
    Cauz-Santos LA; Munhoz CF; Rodde N; Cauet S; Santos AA; Penha HA; Dornelas MC; Varani AM; Oliveira GC; Bergès H; Vieira ML
    Front Plant Sci; 2017; 8():334. PubMed ID: 28344587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions.
    Guo YY; Yang JX; Bai MZ; Zhang GQ; Liu ZJ
    BMC Plant Biol; 2021 May; 21(1):248. PubMed ID: 34058997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae).
    Do HD; Kim JS; Kim JH
    Gene; 2013 Nov; 530(2):229-35. PubMed ID: 23973725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.
    Ma J; Yang B; Zhu W; Sun L; Tian J; Wang X
    Gene; 2013 Oct; 528(2):120-31. PubMed ID: 23900198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae.
    Li B; Zheng Y
    Sci Rep; 2018 Jun; 8(1):9285. PubMed ID: 29915292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae.
    de Cambiaire JC; Otis C; Turmel M; Lemieux C
    BMC Genomics; 2007 Jul; 8():213. PubMed ID: 17610731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex Analyses of Short Inverted Repeats in All Sequenced Chloroplast DNAs.
    Brázda V; Lýsek J; Bartas M; Fojta M
    Biomed Res Int; 2018; 2018():1097018. PubMed ID: 30140690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Evolution of the Chloroplast Genome in the Green Algal Classes Pedinophyceae and Trebouxiophyceae.
    Turmel M; Otis C; Lemieux C
    Genome Biol Evol; 2015 Jul; 7(7):2062-82. PubMed ID: 26139832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene rearrangements in Chlamydomonas chloroplast DNAs are accounted for by inversions and by the expansion/contraction of the inverted repeat.
    Boudreau E; Turmel M
    Plant Mol Biol; 1995 Jan; 27(2):351-64. PubMed ID: 7888624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae.
    Hao Z; Cheng T; Zheng R; Xu H; Zhou Y; Li M; Lu F; Dong Y; Liu X; Chen J; Shi J
    PLoS One; 2016; 11(8):e0161809. PubMed ID: 27560965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene rearrangement analysis and ancestral order inference from chloroplast genomes with inverted repeat.
    Yue F; Cui L; dePamphilis CW; Moret BM; Tang J
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S25. PubMed ID: 18366615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive gene rearrangements in the chloroplast DNAs of Chlamydomonas species featuring multiple dispersed repeats.
    Boudreau E; Turmel M
    Mol Biol Evol; 1996 Jan; 13(1):233-43. PubMed ID: 8583896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential organellar inheritance in Passiflora's (Passifloraceae) subgenera.
    Muschner VC; Lorenz-Lemke AP; Vecchia M; Bonatto SL; Salzano FM; Freitas LB
    Genetica; 2006; 128(1-3):449-53. PubMed ID: 17028972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete Chloroplast Genome of Medicinal Plant Lonicera japonica: Genome Rearrangement, Intron Gain and Loss, and Implications for Phylogenetic Studies.
    He L; Qian J; Li X; Sun Z; Xu X; Chen S
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28178222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales.
    Turmel M; Otis C; Lemieux C
    BMC Biol; 2005 Oct; 3():22. PubMed ID: 16236178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The complete chloroplast genome sequences of Lychnis wilfordii and Silene capitata and comparative analyses with other Caryophyllaceae genomes.
    Kang JS; Lee BY; Kwak M
    PLoS One; 2017; 12(2):e0172924. PubMed ID: 28241056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.