These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32722751)

  • 1. Impact of mating system on range size and niche breadth in Epipactis (Orchidaceae).
    Evans A; Jacquemyn H
    Ann Bot; 2020 Nov; 126(7):1203-1214. PubMed ID: 32722751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica.
    Jacquemyn H; Waud M; Lievens B; Brys R
    Ann Bot; 2016 Jul; 118(1):105-14. PubMed ID: 26946528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology.
    Tĕšitelová T; Tĕšitel J; Jersáková J; RÍhová G; Selosse MA
    Am J Bot; 2012 Jun; 99(6):1020-32. PubMed ID: 22688426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Severe outbreeding and inbreeding depression maintain mating system differentiation in Epipactis (Orchidaceae).
    Brys R; Jacquemyn H
    J Evol Biol; 2016 Feb; 29(2):352-9. PubMed ID: 26548440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of drivers of landscape distribution of forest orchids using germination experiment and species distribution models.
    Hemrová L; Kotilínek M; Konečná M; Paulič R; Jersáková J; Těšitelová T; Knappová J; Münzbergová Z
    Oecologia; 2019 Jun; 190(2):411-423. PubMed ID: 31154510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do selfing species have greater niche breadth? Support from ecological niche modeling.
    Grant AG; Kalisz S
    Evolution; 2020 Jan; 74(1):73-88. PubMed ID: 31707744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. You are what you get from your fungi: nitrogen stable isotope patterns in Epipactis species.
    Schiebold JM; Bidartondo MI; Karasch P; Gravendeel B; Gebauer G
    Ann Bot; 2017 May; 119(7):1085-1095. PubMed ID: 28334113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae).
    Kolanowska M
    PLoS One; 2013; 8(10):e77352. PubMed ID: 24143222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative allogamy-autogamy transitions drive actual and incipient speciation during the ongoing evolutionary radiation within the orchid genus Epipactis (Orchidaceae).
    Sramkó G; Paun O; Brandrud MK; Laczkó L; Molnár A; Bateman RM
    Ann Bot; 2019 Oct; 124(3):481-497. PubMed ID: 31231754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orchid diversity: Spatial and climatic patterns from herbarium records.
    Gaskett AC; Gallagher RV
    Ecol Evol; 2018 Nov; 8(22):11235-11245. PubMed ID: 30519440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan.
    Ogura-Tsujita Y; Yukawa T
    Mycorrhiza; 2008 Sep; 18(6-7):331-8. PubMed ID: 18661158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tree species occurring in Amazonian wetland forests consistently show broader range sizes and niche breadths than trees in upland forests.
    Luize BG; Palma-Silva C; Siqueira T; Silva TSF
    Ecol Evol; 2024 Apr; 14(4):e11230. PubMed ID: 38681185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional response traits and altered ecological niches drive the disassembly of cloud forest bird communities in tropical montane countrysides.
    Ausprey IJ; Newell FL; Robinson SK
    J Anim Ecol; 2022 Nov; 91(11):2314-2328. PubMed ID: 36161275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza.
    Jacquemyn H; Waud M; Merckx VS; Brys R; Tyteca D; Hedrén M; Lievens B
    Sci Rep; 2016 Nov; 6():37182. PubMed ID: 27883008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycorrhizal preference promotes habitat invasion by a native Australian orchid: Microtis media.
    De Long JR; Swarts ND; Dixon KW; Egerton-Warburton LM
    Ann Bot; 2013 Mar; 111(3):409-18. PubMed ID: 23275632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities.
    Bar-Massada A
    Proc Biol Sci; 2015 Aug; 282(1813):20150927. PubMed ID: 26246546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of ecological specialization underlies plant endemism in the Atlantic Forest.
    Nery EK; Caddah MK; Santos MF; Nogueira A
    Ann Bot; 2023 Jul; 131(6):921-940. PubMed ID: 36757803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why does an obligate autogamous orchid produce insect attractants in nectar? - a case study on Epipactis albensis (Orchidaceae).
    Jakubska-Busse A; Czeluśniak I; Kobyłka MJ; Hojniak M
    BMC Plant Biol; 2022 Apr; 22(1):196. PubMed ID: 35418038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel insights into orchid mycorrhiza functioning from stable isotope signatures of fungal pelotons.
    Zahn FE; Söll E; Chapin TK; Wang D; Gomes SIF; Hynson NA; Pausch J; Gebauer G
    New Phytol; 2023 Aug; 239(4):1449-1463. PubMed ID: 37343598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species.
    Jacquemyn H; Lenaerts M; Tyteca D; Lievens B
    Microbiologyopen; 2013 Aug; 2(4):644-58. PubMed ID: 23836678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.