These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32722872)

  • 21. Functional Analysis Reveals the Regulatory Role of
    Peng Q; Wang L; Ogutu C; Liu J; Liu L; Mollah MDA; Han Y
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32046163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.
    Zhou H; Lin-Wang K; Wang H; Gu C; Dare AP; Espley RV; He H; Allan AC; Han Y
    Plant J; 2015 Apr; 82(1):105-21. PubMed ID: 25688923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NLR1 is a strong candidate for the Rm3 dominant green peach aphid (Myzus persicae) resistance trait in peach.
    Pan L; Lu Z; Yan L; Zeng W; Shen Z; Yu M; Bu L; Cui G; Niu L; Wang Z
    J Exp Bot; 2022 Mar; 73(5):1357-1369. PubMed ID: 35022695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics and regulatory pathway of the PrupeSEP1 SEPALLATA gene during ripening and softening in peach fruits.
    Li J; Li F; Qian M; Han M; Liu H; Zhang D; Ma J; Zhao C
    Plant Sci; 2017 Apr; 257():63-73. PubMed ID: 28224919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide identification of the ARF (auxin response factor) gene family in peach and their expression analysis.
    Diao D; Hu X; Guan D; Wang W; Yang H; Liu Y
    Mol Biol Rep; 2020 Jun; 47(6):4331-4344. PubMed ID: 32430848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-Wide Analysis of Calmodulin Binding Transcription Activator (CAMTA) Gene Family in Peach (
    Yang C; Li Z; Cao X; Duan W; Wei C; Zhang C; Jiang D; Li M; Chen K; Qiao Y; Liu H; Zhang B
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Significant Reduction of the Expression of Peach ( Prunus persica L. Batsch) Allergen-Encoding Genes by Fruit Bagging with Opaque Paper.
    Ma Y; Zhao X; Ren H; Wu H; Guo M; Zhang Y; He Z; Han J; Tong R
    J Agric Food Chem; 2018 Apr; 66(16):4051-4061. PubMed ID: 29634265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo chromosome-level genome of a semi-dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature-sensitive semi-dwarf trait and PpB3-1 for flower type and size.
    Lian X; Zhang H; Jiang C; Gao F; Yan L; Zheng X; Cheng J; Wang W; Wang X; Ye X; Li J; Zhang L; Li Z; Tan B; Feng J
    Plant Biotechnol J; 2022 May; 20(5):886-902. PubMed ID: 34919780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative transcriptome analyses of fruit development among pears, peaches, and strawberries provide new insights into single sigmoid patterns.
    Pei MS; Cao SH; Wu L; Wang GM; Xie ZH; Gu C; Zhang SL
    BMC Plant Biol; 2020 Mar; 20(1):108. PubMed ID: 32143560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development.
    Jiao Y; Ma RJ; Shen ZJ; Yan J; Yu ML
    J Zhejiang Univ Sci B; 2014 Sep; 15(9):809-19. PubMed ID: 25183035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrative genomics approaches validate PpYUC11-like as candidate gene for the stony hard trait in peach (P. persica L. Batsch).
    Cirilli M; Giovannini D; Ciacciulli A; Chiozzotto R; Gattolin S; Rossini L; Liverani A; Bassi D
    BMC Plant Biol; 2018 May; 18(1):88. PubMed ID: 29776387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined nature and human selections reshaped peach fruit metabolome.
    Cao K; Wang B; Fang W; Zhu G; Chen C; Wang X; Li Y; Wu J; Tang T; Fei Z; Luo J; Wang L
    Genome Biol; 2022 Jul; 23(1):146. PubMed ID: 35788225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic and phenotypic analyses reveal major quantitative loci associated to fruit size and shape traits in a non-flat peach collection (P. persica L. Batsch).
    Cirilli M; Baccichet I; Chiozzotto R; Silvestri C; Rossini L; Bassi D
    Hortic Res; 2021 Nov; 8(1):232. PubMed ID: 34719677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fine mapping of the gene controlling the weeping trait of Prunus persica and its uses for MAS in progenies.
    Wang L; Pan L; Niu L; Cui G; Wei B; Zeng W; Wang Z; Lu Z
    BMC Plant Biol; 2022 Sep; 22(1):459. PubMed ID: 36153492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide identification and transcriptome profiling reveal that E3 ubiquitin ligase genes relevant to ethylene, auxin and abscisic acid are differentially expressed in the fruits of melting flesh and stony hard peach varieties.
    Tan B; Lian X; Cheng J; Zeng W; Zheng X; Wang W; Ye X; Li J; Li Z; Zhang L; Feng J
    BMC Genomics; 2019 Nov; 20(1):892. PubMed ID: 31752682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of EIL and ERF Genes Related to Fruit Ripening in Peach.
    Zhou H; Zhao L; Yang Q; Amar MH; Ogutu C; Peng Q; Liao L; Zhang J; Han Y
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32325835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OVATE Family Protein PpOFP1 Physically Interacts With PpZFHD1 and Confers Salt Tolerance to Tomato and Yeast.
    Tan Q; Jiang S; Wang N; Liu X; Zhang X; Wen B; Fang Y; He H; Chen X; Fu X; Li D; Xiao W; Li L
    Front Plant Sci; 2021; 12():759955. PubMed ID: 34868154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype.
    Tuan PA; Bai S; Yaegaki H; Tamura T; Hihara S; Moriguchi T; Oda K
    BMC Plant Biol; 2015 Nov; 15():280. PubMed ID: 26582106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome re-sequencing reveals the evolutionary history of peach fruit edibility.
    Yu Y; Fu J; Xu Y; Zhang J; Ren F; Zhao H; Tian S; Guo W; Tu X; Zhao J; Jiang D; Zhao J; Wu W; Wang G; Ma R; Jiang Q; Wei J; Xie H
    Nat Commun; 2018 Dec; 9(1):5404. PubMed ID: 30573726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch).
    Tatsuki M; Nakajima N; Fujii H; Shimada T; Nakano M; Hayashi K; Hayama H; Yoshioka H; Nakamura Y
    J Exp Bot; 2013 Feb; 64(4):1049-59. PubMed ID: 23364941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.