BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1097 related articles for article (PubMed ID: 32723242)

  • 1. Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines.
    Jebamony J; Jacob D
    Curr Med Imaging; 2020; 16(6):703-710. PubMed ID: 32723242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer aided detection system for micro calcifications in digital mammograms.
    Mohamed H; Mabrouk MS; Sharawy A
    Comput Methods Programs Biomed; 2014 Oct; 116(3):226-35. PubMed ID: 24909786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevance vector machine for automatic detection of clustered microcalcifications.
    Wei L; Yang Y; Nishikawa RM; Wernick MN; Edwards A
    IEEE Trans Med Imaging; 2005 Oct; 24(10):1278-85. PubMed ID: 16229415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A support vector machine approach for detection of microcalcifications.
    El-Naqa I; Yang Y; Wernick MN; Galatsanos NP; Nishikawa RM
    IEEE Trans Med Imaging; 2002 Dec; 21(12):1552-63. PubMed ID: 12588039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving performance of computer-aided detection scheme by combining results from two machine learning classifiers.
    Park SC; Pu J; Zheng B
    Acad Radiol; 2009 Mar; 16(3):266-74. PubMed ID: 19201355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep feature-based automatic classification of mammograms.
    Arora R; Rai PK; Raman B
    Med Biol Eng Comput; 2020 Jun; 58(6):1199-1211. PubMed ID: 32200453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network.
    Chan HP; Sahiner B; Petrick N; Helvie MA; Lam KL; Adler DD; Goodsitt MM
    Phys Med Biol; 1997 Mar; 42(3):549-67. PubMed ID: 9080535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic detection of microcalcifications using mathematical morphology and a support vector machine.
    Zhang E; Wang F; Li Y; Bai X
    Biomed Mater Eng; 2014; 24(1):53-9. PubMed ID: 24211882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of breast masses in mammograms using genetic programming and feature selection.
    Nandi RJ; Nandi AK; Rangayyan RM; Scutt D
    Med Biol Eng Comput; 2006 Aug; 44(8):683-94. PubMed ID: 16937210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers.
    Mavroforakis ME; Georgiou HV; Dimitropoulos N; Cavouras D; Theodoridis S
    Artif Intell Med; 2006 Jun; 37(2):145-62. PubMed ID: 16716579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decision support system for breast cancer detection using mammograms.
    Ganesan K; Acharya RU; Chua CK; Min LC; Mathew B; Thomas AK
    Proc Inst Mech Eng H; 2013 Jul; 227(7):721-32. PubMed ID: 23636749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.
    Zyout I; Czajkowska J; Grzegorzek M
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():95-107. PubMed ID: 25795630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient Segmentation and Classification System in Medical Images Using Intuitionist Possibilistic Fuzzy C-Mean Clustering and Fuzzy SVM Algorithm.
    Chowdhary CL; Mittal M; P K; Pattanaik PA; Marszalek Z
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A framework for breast cancer classification using Multi-DCNNs.
    Ragab DA; Attallah O; Sharkas M; Ren J; Marshall S
    Comput Biol Med; 2021 Apr; 131():104245. PubMed ID: 33556893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications.
    Wei L; Yang Y; Nishikawa RM; Jiang Y
    IEEE Trans Med Imaging; 2005 Mar; 24(3):371-80. PubMed ID: 15754987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Globally supported radial basis function based collocation method for evolution of level set in mass segmentation using mammograms.
    Kashyap KL; Bajpai MK; Khanna P
    Comput Biol Med; 2017 Aug; 87():22-37. PubMed ID: 28549292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the effect of breast tissue density on detection of masses in mammograms.
    García-Manso A; García-Orellana CJ; González-Velasco HM; Gallardo-Caballero R; Macías-Macías M
    Comput Math Methods Med; 2013; 2013():213794. PubMed ID: 23573165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel featureless approach to mass detection in digital mammograms based on support vector machines.
    Campanini R; Dongiovanni D; Iampieri E; Lanconelli N; Masotti M; Palermo G; Riccardi A; Roffilli M
    Phys Med Biol; 2004 Mar; 49(6):961-75. PubMed ID: 15104319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms.
    Sapate SG; Mahajan A; Talbar SN; Sable N; Desai S; Thakur M
    Comput Methods Programs Biomed; 2018 Sep; 163():1-20. PubMed ID: 30119844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass type-specific sparse representation for mass classification in computer-aided detection on mammograms.
    Kim DH; Lee SH; Ro YM
    Biomed Eng Online; 2013; 12 Suppl 1(Suppl 1):S3. PubMed ID: 24564973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.