BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32723253)

  • 1. Mechano-chemo-biological Computational Models for Arteries in Health, Disease and Healing: From Tissue Remodelling to Drug-eluting Devices.
    Marino M; Vairo G; Wriggers P
    Curr Pharm Des; 2021; 27(16):1904-1917. PubMed ID: 32723253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arterial tissues and their inflammatory response to collagen damage: A continuum in silico model coupling nonlinear mechanics, molecular pathways, and cell behavior.
    Gierig M; Wriggers P; Marino M
    Comput Biol Med; 2023 May; 158():106811. PubMed ID: 37011434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling.
    Marino M; Pontrelli G; Vairo G; Wriggers P
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29118114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the complexity of vascular tone regulation: a multiscale computational approach to integrating chemo-mechano-biological pathways with cardiovascular biomechanics.
    Marino M; Sauty B; Vairo G
    Biomech Model Mechanobiol; 2024 Mar; ():. PubMed ID: 38507180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel chemo-mechano-biological model of arterial tissue growth and remodelling.
    Aparício P; Thompson MS; Watton PN
    J Biomech; 2016 Aug; 49(12):2321-30. PubMed ID: 27184922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and remodelling of living tissues: perspectives, challenges and opportunities.
    Ambrosi D; Ben Amar M; Cyron CJ; DeSimone A; Goriely A; Humphrey JD; Kuhl E
    J R Soc Interface; 2019 Aug; 16(157):20190233. PubMed ID: 31431183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research.
    Erdemir A; Hunter PJ; Holzapfel GA; Loew LM; Middleton J; Jacobs CR; Nithiarasu P; Löhner R; Wei G; Winkelstein BA; Barocas VH; Guilak F; Ku JP; Hicks JL; Delp SL; Sacks M; Weiss JA; Ateshian GA; Maas SA; McCulloch AD; Peng GCY
    J Biomech Eng; 2018 Feb; 140(2):0247011-02470111. PubMed ID: 29247253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do we really understand how drug eluted from stents modulates arterial healing?
    McQueen A; Escuer J; Aggarwal A; Kennedy S; McCormick C; Oldroyd K; McGinty S
    Int J Pharm; 2021 May; 601():120575. PubMed ID: 33845150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
    Metz C; Duda GN; Checa S
    Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamically-motivated chemo-mechanical models and multicellular simulation to provide new insight into active cell and tumour remodelling.
    Senthilkumar I; Howley E; McEvoy E
    Exp Cell Res; 2022 Oct; 419(2):113317. PubMed ID: 36028058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Better design of drug-eluting stents using computer modeling.
    Park K
    J Control Release; 2009 Jan; 133(1):1. PubMed ID: 19038297
    [No Abstract]   [Full Text] [Related]  

  • 12. Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat.
    Checa S; Prendergast PJ; Duda GN
    J Biomech; 2011 Apr; 44(7):1237-45. PubMed ID: 21419412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical modelling of mass transport in an arterial wall with anisotropic transport properties.
    Denny WJ; Walsh MT
    J Biomech; 2014 Jan; 47(1):168-77. PubMed ID: 24210470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modelling of magnesium stent mechanical performance in a remodelling artery: Effects of multiple remodelling stimuli.
    Boland EL; Grogan JA; McHugh PE
    Int J Numer Method Biomed Eng; 2019 Oct; 35(10):e3247. PubMed ID: 31393090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug deposition in coronary arteries with overlapping drug-eluting stents.
    Rikhtegar F; Edelman ER; Olgac U; Poulikakos D; Kurtcuoglu V
    J Control Release; 2016 Sep; 238():1-9. PubMed ID: 27432751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Biomechanics: In-Silico Tools for the Investigation of Surgical Procedures and Devices.
    Carniel EL; Toniolo I; Fontanella CG
    Bioengineering (Basel); 2020 May; 7(2):. PubMed ID: 32486216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.
    Ribeiro FO; Gómez-Benito MJ; Folgado J; Fernandes PR; García-Aznar JM
    PLoS One; 2015; 10(6):e0127722. PubMed ID: 26043112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-silico dynamic analysis of cytotoxic drug administration to solid tumours: Effect of binding affinity and vessel permeability.
    Vavourakis V; Stylianopoulos T; Wijeratne PA
    PLoS Comput Biol; 2018 Oct; 14(10):e1006460. PubMed ID: 30296260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminal flow patterns dictate arterial drug deposition in stent-based delivery.
    Kolachalama VB; Tzafriri AR; Arifin DY; Edelman ER
    J Control Release; 2009 Jan; 133(1):24-30. PubMed ID: 18926864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling.
    Karanasiou GS; Papafaklis MI; Conway C; Michalis LK; Tzafriri R; Edelman ER; Fotiadis DI
    Ann Biomed Eng; 2017 Apr; 45(4):853-872. PubMed ID: 28160103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.