These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3272346)

  • 21. Dependence of mononucleosome deoxyribonucleic acid conformation on the deoxyribonucleic acid length and H1/H5 content. Circular dichroism and thermal denaturation studies.
    Cowman MK; Fasman GD
    Biochemistry; 1980 Feb; 19(3):532-41. PubMed ID: 7356945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone H5 can increase the internucleosome spacing in dinucleosomes to nativelike values.
    Künzler P; Stein A
    Biochemistry; 1983 Apr; 22(8):1783-9. PubMed ID: 6849886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of the domains of histones H1 and H5 in the structural organization of soluble chromatin.
    Thoma F; Losa R; Koller T
    J Mol Biol; 1983 Jul; 167(3):619-40. PubMed ID: 6876160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of high mobility group proteins HMG 1 and HMG 2 with nucleosomes studied by gel electrophoresis.
    Stros M; Shick VV; Belyavsky AV; Mirzabekov AD
    Mol Biol Rep; 1985 Oct; 10(4):221-6. PubMed ID: 4069107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of HMG14 with chromatin.
    Graziano V; Ramakrishnan V
    J Mol Biol; 1990 Aug; 214(4):897-910. PubMed ID: 2388273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exchange of histones H1 and H5 between chromatin fragments. A preference of H5 for higher-order structures.
    Thomas JO; Rees C
    Eur J Biochem; 1983 Jul; 134(1):109-15. PubMed ID: 6861754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Position and orientation of the globular domain of linker histone H5 on the nucleosome.
    Zhou YB; Gerchman SE; Ramakrishnan V; Travers A; Muyldermans S
    Nature; 1998 Sep; 395(6700):402-5. PubMed ID: 9759733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective depletion and reconstitution of nucleosome core particles.
    Sibbet GJ; Carpenter BG
    Biochim Biophys Acta; 1983 Aug; 740(3):331-8. PubMed ID: 6871225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primary organization of nucleosomes. Interaction of non-histone high mobility group proteins 14 and 17 with nucleosomes, as revealed by DNA-protein crosslinking and immunoaffinity isolation.
    Shick VV; Belyavsky AV; Mirzabekov AD
    J Mol Biol; 1985 Sep; 185(2):329-39. PubMed ID: 4057250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-directed mutagenesis studies on the binding of the globular domain of linker histone H5 to the nucleosome.
    Buckle RS; Maman JD; Allan J
    J Mol Biol; 1992 Feb; 223(3):651-9. PubMed ID: 1542112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linker histones H1 and H5 prevent the mobility of positioned nucleosomes.
    Pennings S; Meersseman G; Bradbury EM
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10275-9. PubMed ID: 7937940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contacts of the globular domain of histone H5 and core histones with DNA in a "chromatosome".
    Hayes JJ; Pruss D; Wolffe AP
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7817-21. PubMed ID: 8052665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of salt on the binding of the linker histone H1 to DNA and nucleosomes.
    Al-Natour Z; Hassan AH
    DNA Cell Biol; 2007 Jun; 26(6):445-52. PubMed ID: 17570768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro core particle and nucleosome assembly at physiological ionic strength.
    Ruiz-Carrillo A; Jorcano JL; Eder G; Lurz R
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3284-8. PubMed ID: 291002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Urea-induced binding of histone 1 to nucleosomes lacking linker DNA.
    Newman SA; Noon P
    Nucleic Acids Res; 1979 Feb; 6(2):609-23. PubMed ID: 424307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epigallocatechin Gallate Affects the Structure of Chromatosomes, Nucleosomes and Their Complexes with PARP1.
    Andreeva TV; Maluchenko NV; Efremenko AV; Lyubitelev AV; Korovina AN; Afonin DA; Kirpichnikov MP; Studitsky VM; Feofanov AV
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution mechanism of nucleosome core particles mediated by poly(L-glutamic acid).
    Oohara I; Suyama A; Wada A
    Biochim Biophys Acta; 1983 Dec; 741(3):322-32. PubMed ID: 6197089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA accessibility to minor groove ligands in core nucleosome and chromatosome.
    Foderà R; Caneva R; Canzonetta C; Savino M
    Nucleosides Nucleotides Nucleic Acids; 2000 Aug; 19(8):1231-40. PubMed ID: 11097053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A topoisomerase from chicken erythrocyte nuclei which does not assemble nucleosome core particles in vitro.
    Ellison MJ; Pulleyblank DE
    Can J Biochem; 1982 Jun; 60(6):651-8. PubMed ID: 6288203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of exogenous histone H5 on integration of histone H1 in rat liver chromatin. Correlations with aberrant epsilon-N-methylation of histone H1.
    Byvoet P; Barber M; Amidei K; Lowell N; Trudeau W
    Biochim Biophys Acta; 1986 Jun; 867(3):163-75. PubMed ID: 3087426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.