BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32723862)

  • 1. Discovery of a heme-binding domain in a neuronal voltage-gated potassium channel.
    Burton MJ; Cresser-Brown J; Thomas M; Portolano N; Basran J; Freeman SL; Kwon H; Bottrill AR; Llansola-Portoles MJ; Pascal AA; Jukes-Jones R; Chernova T; Schmid R; Davies NW; Storey NM; Dorlet P; Moody PCE; Mitcheson JS; Raven EL
    J Biol Chem; 2020 Sep; 295(38):13277-13286. PubMed ID: 32723862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity.
    Wang ZJ; Soohoo SM; Tiwari PB; Piszczek G; Brelidze TI
    J Biol Chem; 2020 Mar; 295(13):4114-4123. PubMed ID: 32047112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-dependent activation in EAG channels follows a ligand-receptor rather than a mechanical-lever mechanism.
    Malak OA; Gluhov GS; Grizel AV; Kudryashova KS; Sokolova OS; Loussouarn G
    J Biol Chem; 2019 Apr; 294(16):6506-6521. PubMed ID: 30808709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structural mechanism of KCNH-channel regulation by the eag domain.
    Haitin Y; Carlson AE; Zagotta WN
    Nature; 2013 Sep; 501(7467):444-8. PubMed ID: 23975098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HERG potassium channel regulation by the N-terminal eag domain.
    Gustina AS; Trudeau MC
    Cell Signal; 2012 Aug; 24(8):1592-8. PubMed ID: 22522181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the PAS domain of the hEAG potassium channel.
    Tang X; Shao J; Qin X
    Acta Crystallogr F Struct Biol Commun; 2016 Aug; 72(Pt 8):578-85. PubMed ID: 27487920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural properties of PAS domains from the KCNH potassium channels.
    Adaixo R; Harley CA; Castro-Rodrigues AF; Morais-Cabral JH
    PLoS One; 2013; 8(3):e59265. PubMed ID: 23555008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the cytoplasmic N-terminal Cap and Per-Arnt-Sim (PAS) domain in trafficking and stabilization of Kv11.1 channels.
    Ke Y; Hunter MJ; Ng CA; Perry MD; Vandenberg JI
    J Biol Chem; 2014 May; 289(20):13782-91. PubMed ID: 24695734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eag Domains Regulate LQT Mutant hERG Channels in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
    Liu QN; Trudeau MC
    PLoS One; 2015; 10(4):e0123951. PubMed ID: 25923442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ether-à-go-go K
    Bauer CK; Schwarz JR
    J Physiol; 2018 Mar; 596(5):769-783. PubMed ID: 29333676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rescue of aberrant gating by a genetically encoded PAS (Per-Arnt-Sim) domain in several long QT syndrome mutant human ether-á-go-go-related gene potassium channels.
    Gianulis EC; Trudeau MC
    J Biol Chem; 2011 Jun; 286(25):22160-9. PubMed ID: 21536673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calmodulin Regulates Human Ether à Go-Go 1 (hEAG1) Potassium Channels through Interactions of the Eag Domain with the Cyclic Nucleotide Binding Homology Domain.
    Lörinczi E; Helliwell M; Finch A; Stansfeld PJ; Davies NW; Mahaut-Smith M; Muskett FW; Mitcheson JS
    J Biol Chem; 2016 Aug; 291(34):17907-18. PubMed ID: 27325704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic insight into human ether-à-go-go-related gene (hERG) K+ channel deactivation gating from the solution structure of the EAG domain.
    Muskett FW; Thouta S; Thomson SJ; Bowen A; Stansfeld PJ; Mitcheson JS
    J Biol Chem; 2011 Feb; 286(8):6184-91. PubMed ID: 21135103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism of EAG1 channel inhibition by imipramine binding to the PAS domain.
    Wang ZJ; Ghorbani M; Chen X; Tiwari PB; Klauda JB; Brelidze TI
    J Biol Chem; 2023 Dec; 299(12):105391. PubMed ID: 37898402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. hERG potassium channel gating is mediated by N- and C-terminal region interactions.
    Gustina AS; Trudeau MC
    J Gen Physiol; 2011 Mar; 137(3):315-25. PubMed ID: 21357734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of S5P alpha-helix charge mutants on inactivation of hERG K+ channels.
    Clarke CE; Hill AP; Zhao J; Kondo M; Subbiah RN; Campbell TJ; Vandenberg JI
    J Physiol; 2006 Jun; 573(Pt 2):291-304. PubMed ID: 16556651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of undecylenic acid as EAG channel inhibitor using surface plasmon resonance-based screen of KCNH channels.
    Wang ZJ; Tiwari PB; Üren A; Brelidze TI
    BMC Pharmacol Toxicol; 2019 Jul; 20(1):42. PubMed ID: 31315662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The eag domain regulates hERG channel inactivation gating via a direct interaction.
    Gustina AS; Trudeau MC
    J Gen Physiol; 2013 Feb; 141(2):229-41. PubMed ID: 23319729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences between ion binding to eag and HERG voltage sensors contribute to differential regulation of activation and deactivation gating.
    Lin MC; Papazian DM
    Channels (Austin); 2007; 1(6):429-37. PubMed ID: 18690045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening for Non-Pore-Binding Modulators of EAG K+ Channels.
    Fernandes AS; Morais-Cabral JH; Harley CA
    J Biomol Screen; 2016 Aug; 21(7):758-65. PubMed ID: 26975997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.