These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32724127)

  • 1. Rod function deficit in retained photoreceptors of patients with class B Rhodopsin mutations.
    Cideciyan AV; Jacobson SG; Roman AJ; Sumaroka A; Wu V; Charng J; Lisi B; Swider M; Aguirre GD; Beltran WA
    Sci Rep; 2020 Jul; 10(1):12552. PubMed ID: 32724127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light.
    Zhang R; Oglesby E; Marsh-Armstrong N
    Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry.
    Li ZY; Jacobson SG; Milam AH
    Exp Eye Res; 1994 Apr; 58(4):397-408. PubMed ID: 7925677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa.
    Zhang X; Girardot PE; Sellers JT; Li Y; Wang J; Chrenek MA; Wu W; Skelton H; Nickerson JM; Pardue MT; Boatright JH
    Mol Vis; 2019; 25():462-476. PubMed ID: 31523123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration.
    Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL
    J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagy in
    Wen RH; Stanar P; Tam B; Moritz OL
    Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of cone molecular markers in rhodopsin-mutant human retinas with retinitis pigmentosa.
    John SK; Smith JE; Aguirre GD; Milam AH
    Mol Vis; 2000 Nov; 6():204-15. PubMed ID: 11063754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypes of stop codon and splice site rhodopsin mutations causing retinitis pigmentosa.
    Jacobson SG; Kemp CM; Cideciyan AV; Macke JP; Sung CH; Nathans J
    Invest Ophthalmol Vis Sci; 1994 Apr; 35(5):2521-34. PubMed ID: 8163341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa.
    Streichert LC; Birnbach CD; Reh TA
    J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variegated yet non-random rod and cone photoreceptor disease patterns in RPGR-ORF15-associated retinal degeneration.
    Charng J; Cideciyan AV; Jacobson SG; Sumaroka A; Schwartz SB; Swider M; Roman AJ; Sheplock R; Anand M; Peden MC; Khanna H; Heon E; Wright AF; Swaroop A
    Hum Mol Genet; 2016 Dec; 25(24):5444-5459. PubMed ID: 27798110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early loss of synaptic protein PSD-95 from rod terminals of rhodopsin P347L transgenic porcine retina.
    Blackmon SM; Peng YW; Hao Y; Moon SJ; Oliveira LB; Tatebayashi M; Petters RM; Wong F
    Brain Res; 2000 Dec; 885(1):53-61. PubMed ID: 11121529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa.
    Orlans HO; Barnard AR; MacLaren RE
    Exp Eye Res; 2020 Jan; 190():107895. PubMed ID: 31816293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.
    Sato S; Peshenko IV; Olshevskaya EV; Kefalov VJ; Dizhoor AM
    J Neurosci; 2018 Mar; 38(12):2990-3000. PubMed ID: 29440533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rod photoreceptor neurite sprouting in retinitis pigmentosa.
    Li ZY; Kljavin IJ; Milam AH
    J Neurosci; 1995 Aug; 15(8):5429-38. PubMed ID: 7643192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of PRCD alters number and packaging density of rhodopsin in rod photoreceptor disc membranes.
    Sechrest ER; Murphy J; Senapati S; Goldberg AFX; Park PS; Kolandaivelu S
    Sci Rep; 2020 Oct; 10(1):17885. PubMed ID: 33087780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disrupted Plasma Membrane Protein Homeostasis in a
    Ropelewski P; Imanishi Y
    J Neurosci; 2019 Jul; 39(28):5581-5593. PubMed ID: 31061086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease.
    Leinonen H; Pham NC; Boyd T; Santoso J; Palczewski K; Vinberg F
    Elife; 2020 Sep; 9():. PubMed ID: 32960171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation.
    Birch DG; Hood DC; Nusinowitz S; Pepperberg DR
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1603-14. PubMed ID: 7601641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa.
    Wu TH; Ting TD; Okajima TI; Pepperberg DR; Ho YK; Ripps H; Naash MI
    Neuroscience; 1998 Dec; 87(3):709-17. PubMed ID: 9758235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective trafficking of rhodopsin and its role in retinal degenerations.
    Hollingsworth TJ; Gross AK
    Int Rev Cell Mol Biol; 2012; 293():1-44. PubMed ID: 22251557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.