These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 32724127)
21. Rod photoreceptor clearance due to misfolded rhodopsin is linked to a DAMP-immune checkpoint switch. Lee SJ; Wang W; Jin L; Lu X; Gao L; Chen Y; Liu T; Emery D; Vukmanic E; Liu Y; Kaplan HJ; Dean DC J Biol Chem; 2021; 296():100102. PubMed ID: 33214223 [TBL] [Abstract][Full Text] [Related]
22. Characterization of rhodopsin mis-sorting and constitutive activation in a transgenic rat model of retinitis pigmentosa. Green ES; Menz MD; LaVail MM; Flannery JG Invest Ophthalmol Vis Sci; 2000 May; 41(6):1546-53. PubMed ID: 10798675 [TBL] [Abstract][Full Text] [Related]
23. Electrophysiologic and phenotypic features of an autosomal cone-rod dystrophy caused by a novel CRX mutation. Lines MA; Hébert M; McTaggart KE; Flynn SJ; Tennant MT; MacDonald IM Ophthalmology; 2002 Oct; 109(10):1862-70. PubMed ID: 12359607 [TBL] [Abstract][Full Text] [Related]
24. Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors. Becirovic E; Nguyen ON; Paparizos C; Butz ES; Stern-Schneider G; Wolfrum U; Hauck SM; Ueffing M; Wahl-Schott C; Michalakis S; Biel M Hum Mol Genet; 2014 Nov; 23(22):5989-97. PubMed ID: 24963162 [TBL] [Abstract][Full Text] [Related]
25. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Viringipurampeer IA; Gregory-Evans CY; Metcalfe AL; Bashar E; Moritz OL; Gregory-Evans K Mol Neurobiol; 2019 Mar; 56(3):1637-1652. PubMed ID: 29911255 [TBL] [Abstract][Full Text] [Related]
26. SARM1 deficiency promotes rod and cone photoreceptor cell survival in a model of retinal degeneration. Ozaki E; Gibbons L; Neto NG; Kenna P; Carty M; Humphries M; Humphries P; Campbell M; Monaghan M; Bowie A; Doyle SL Life Sci Alliance; 2020 May; 3(5):. PubMed ID: 32312889 [TBL] [Abstract][Full Text] [Related]
27. Stable rhodopsin/arrestin complex leads to retinal degeneration in a transgenic mouse model of autosomal dominant retinitis pigmentosa. Chen J; Shi G; Concepcion FA; Xie G; Oprian D; Chen J J Neurosci; 2006 Nov; 26(46):11929-37. PubMed ID: 17108167 [TBL] [Abstract][Full Text] [Related]
28. The F220C and F45L rhodopsin mutations identified in retinitis pigmentosa patients do not cause pathology in mice. Lewis TR; Shores CR; Cady MA; Hao Y; Arshavsky VY; Burns ME Sci Rep; 2020 May; 10(1):7538. PubMed ID: 32371886 [TBL] [Abstract][Full Text] [Related]
29. Essential and synergistic roles of RP1 and RP1L1 in rod photoreceptor axoneme and retinitis pigmentosa. Yamashita T; Liu J; Gao J; LeNoue S; Wang C; Kaminoh J; Bowne SJ; Sullivan LS; Daiger SP; Zhang K; Fitzgerald ME; Kefalov VJ; Zuo J J Neurosci; 2009 Aug; 29(31):9748-60. PubMed ID: 19657028 [TBL] [Abstract][Full Text] [Related]
30. Altered light responses of single rod photoreceptors in transgenic pigs expressing P347L or P347S rhodopsin. Kraft TW; Allen D; Petters RM; Hao Y; Peng YW; Wong F Mol Vis; 2005 Dec; 11():1246-56. PubMed ID: 16402026 [TBL] [Abstract][Full Text] [Related]
31. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Cideciyan AV; Sudharsan R; Dufour VL; Massengill MT; Iwabe S; Swider M; Lisi B; Sumaroka A; Marinho LF; Appelbaum T; Rossmiller B; Hauswirth WW; Jacobson SG; Lewin AS; Aguirre GD; Beltran WA Proc Natl Acad Sci U S A; 2018 Sep; 115(36):E8547-E8556. PubMed ID: 30127005 [TBL] [Abstract][Full Text] [Related]
32. Genetic rescue models refute nonautonomous rod cell death in retinitis pigmentosa. Koch SF; Duong JK; Hsu CW; Tsai YT; Lin CS; Wahl-Schott CA; Tsang SH Proc Natl Acad Sci U S A; 2017 May; 114(20):5259-5264. PubMed ID: 28468800 [TBL] [Abstract][Full Text] [Related]
33. Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. Cideciyan AV; Hood DC; Huang Y; Banin E; Li ZY; Stone EM; Milam AH; Jacobson SG Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7103-8. PubMed ID: 9618546 [TBL] [Abstract][Full Text] [Related]
34. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes. Haeri M; Knox BE PLoS One; 2012; 7(1):e30101. PubMed ID: 22276148 [TBL] [Abstract][Full Text] [Related]
35. Constitutive "light" adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss. Sieving PA; Fowler ML; Bush RA; Machida S; Calvert PD; Green DG; Makino CL; McHenry CL J Neurosci; 2001 Aug; 21(15):5449-60. PubMed ID: 11466416 [TBL] [Abstract][Full Text] [Related]
36. Dominant and recessive mutations in rhodopsin activate different cell death pathways. Comitato A; Di Salvo MT; Turchiano G; Montanari M; Sakami S; Palczewski K; Marigo V Hum Mol Genet; 2016 Jul; 25(13):2801-2812. PubMed ID: 27149983 [TBL] [Abstract][Full Text] [Related]
37. Assessment of visual function and retinal structure following acute light exposure in the light sensitive T4R rhodopsin mutant dog. Iwabe S; Ying GS; Aguirre GD; Beltran WA Exp Eye Res; 2016 May; 146():341-353. PubMed ID: 27085210 [TBL] [Abstract][Full Text] [Related]
38. CRB2 Loss in Rod Photoreceptors Is Associated with Progressive Loss of Retinal Contrast Sensitivity. Alves CH; Boon N; Mulder AA; Koster AJ; Jost CR; Wijnholds J Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31438467 [TBL] [Abstract][Full Text] [Related]
39. Retinal function and rhodopsin levels in autosomal dominant retinitis pigmentosa with rhodopsin mutations. Jacobson SG; Kemp CM; Sung CH; Nathans J Am J Ophthalmol; 1991 Sep; 112(3):256-71. PubMed ID: 1882937 [TBL] [Abstract][Full Text] [Related]
40. Rhodopsin gene expression determines rod outer segment size and rod cell resistance to a dominant-negative neurodegeneration mutant. Price BA; Sandoval IM; Chan F; Nichols R; Roman-Sanchez R; Wensel TG; Wilson JH PLoS One; 2012; 7(11):e49889. PubMed ID: 23185477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]