BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 32724337)

  • 41. Recent Advances in Aptamer-Based Sensors for Sensitive Detection of Neurotransmitters.
    Park JH; Eom YS; Kim TH
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185488
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flexible, Miniaturized Sensing Probes Inspired by Biofuel Cells for Monitoring Synaptically Released Glutamate in the Mouse Brain.
    Nithianandam P; Liu TL; Chen S; Jia Y; Dong Y; Saul M; Tedeschi A; Sun W; Li J
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202310245. PubMed ID: 37632702
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent Advances in Electrochemical Aptasensors for Detection of Biomarkers.
    Majdinasab M; Marty JL
    Pharmaceuticals (Basel); 2022 Aug; 15(8):. PubMed ID: 36015143
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advances in neurochemical measurements: A review of biomarkers and devices for the development of closed-loop deep brain stimulation systems.
    Rojas Cabrera JM; Price JB; Rusheen AE; Goyal A; Jondal D; Barath AS; Shin H; Chang SY; Bennet KE; Blaha CD; Lee KH; Oh Y
    Rev Anal Chem; 2020; 39(1):188-199. PubMed ID: 33883813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 2D Materials in Development of Electrochemical Point-of-Care Cancer Screening Devices.
    Mohammadniaei M; Nguyen HV; Tieu MV; Lee MH
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31575012
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications.
    Vilian ATE; Dinesh B; Kang SM; Krishnan UM; Huh YS; Han YK
    Mikrochim Acta; 2019 Feb; 186(3):203. PubMed ID: 30796594
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo Electrochemical Biosensor for Brain Glutamate Detection: A Mini Review.
    Hamdan SK; Mohd Zain A
    Malays J Med Sci; 2014 Dec; 21(Spec Issue):12-26. PubMed ID: 25941459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fast-Scanning Potential-Gated Organic Electrochemical Transistors for Highly Sensitive Sensing of Dopamine in Living Rat Brain.
    Li W; Jin J; Xiong T; Yu P; Mao L
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202204134. PubMed ID: 35583258
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.
    Val-Laillet D; Aarts E; Weber B; Ferrari M; Quaresima V; Stoeckel LE; Alonso-Alonso M; Audette M; Malbert CH; Stice E
    Neuroimage Clin; 2015; 8():1-31. PubMed ID: 26110109
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monitoring the electrochemical responses of neurotransmitters through localized surface plasmon resonance using nanohole array.
    Li N; Lu Y; Li S; Zhang Q; Wu J; Jiang J; Liu GL; Liu Q
    Biosens Bioelectron; 2017 Jul; 93():241-249. PubMed ID: 27591902
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Materials Approaches for Improving Electrochemical Sensor Performance.
    Beaver K; Dantanarayana A; Minteer SD
    J Phys Chem B; 2021 Nov; 125(43):11820-11834. PubMed ID: 34677956
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct Electrochemical Detection of Glutamate, Acetylcholine, Choline, and Adenosine Using Non-Enzymatic Electrodes.
    Shadlaghani A; Farzaneh M; Kinser D; Reid RC
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678261
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wireless Instantaneous Neurotransmitter Concentration System: electrochemical monitoring of serotonin using fast-scan cyclic voltammetry--a proof-of-principle study.
    Griessenauer CJ; Chang SY; Tye SJ; Kimble CJ; Bennet KE; Garris PA; Lee KH
    J Neurosurg; 2010 Sep; 113(3):656-65. PubMed ID: 20415521
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.
    Wolfrum B; Kätelhön E; Yakushenko A; Krause KJ; Adly N; Hüske M; Rinklin P
    Acc Chem Res; 2016 Sep; 49(9):2031-40. PubMed ID: 27602780
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination.
    Tajik S; Dourandish Z; Zhang K; Beitollahi H; Le QV; Jang HW; Shokouhimehr M
    RSC Adv; 2020 Apr; 10(26):15406-15429. PubMed ID: 35495425
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanosensors for neurotransmitters.
    Polo E; Kruss S
    Anal Bioanal Chem; 2016 Apr; 408(11):2727-41. PubMed ID: 26586160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct in Vivo Electrochemical Detection of Resting Dopamine Using Poly(3,4-ethylenedioxythiophene)/Carbon Nanotube Functionalized Microelectrodes.
    Taylor IM; Patel NA; Freedman NC; Castagnola E; Cui XT
    Anal Chem; 2019 Oct; 91(20):12917-12927. PubMed ID: 31512849
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Moving toward smart biomedical sensing.
    Naghdi T; Ardalan S; Asghari Adib Z; Sharifi AR; Golmohammadi H
    Biosens Bioelectron; 2023 Mar; 223():115009. PubMed ID: 36565545
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrochemical Analysis of Neurotransmitters.
    Bucher ES; Wightman RM
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():239-61. PubMed ID: 25939038
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel electroanalytical method for simultaneous detection of two neurotransmitter dopamine and serotonin in human serum.
    Hasanzadeh M; Shadjou N; Omidinia E
    J Neurosci Methods; 2013 Sep; 219(1):52-60. PubMed ID: 23872244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.