These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32724521)

  • 41. Food-web interaction strength distributions are conserved by greater variation between than within predator-prey pairs.
    Preston DL; Falke LP; Henderson JS; Novak M
    Ecology; 2019 Oct; 100(10):e02816. PubMed ID: 31287561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of changing prey availability on the prevalence of Diphyllobothrium in river otters from Yellowstone National Park.
    Crait JR; McIntosh AD; Greiner EC; Ben-David M
    J Parasitol; 2015 Apr; 101(2):240-3. PubMed ID: 25192057
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial and seasonal factors are key determinants in the aggregation of helminths in their definitive hosts: Pseudamphistomum truncatum in otters (Lutra lutra).
    Sherrard-Smith E; Perkins SE; Chadwick EA; Cable J
    Int J Parasitol; 2015 Jan; 45(1):75-83. PubMed ID: 25444862
    [TBL] [Abstract][Full Text] [Related]  

  • 44. East-West Divide: temperature and land cover drive spatial variation of Toxoplasma gondii infection in Eurasian otters (Lutra lutra) from England and Wales.
    Smallbone WA; Chadwick EA; Francis J; Guy E; Perkins SE; Sherrard-Smith E; Cable J
    Parasitology; 2017 Sep; 144(11):1433-1440. PubMed ID: 28653587
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Seasonal trophic niche shift and cascading effect of a generalist predator fish.
    Xu J; Wen Z; Gong Z; Zhang M; Xie P; Hansson LA
    PLoS One; 2012; 7(12):e49691. PubMed ID: 23251347
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Birds of prey as limiting factors of gamebird populations in Europe: a review.
    Valkama J; Korpimäki E; Arroyo B; Beja P; Bretagnolle V; Bro E; Kenward R; Mañosa S; Redpath SM; Thirgood S; Viñuela J
    Biol Rev Camb Philos Soc; 2005 May; 80(2):171-203. PubMed ID: 15921048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity.
    Jiang L; Morin PJ
    Am Nat; 2005 Mar; 165(3):350-63. PubMed ID: 15729665
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fatty acid analysis as a tool to infer the diet in Illinois river otters (Lontra canadensis).
    Satterthwaite-Phillips D; Novakofski J; Mateus-Pinilla N
    J Anim Sci Technol; 2014; 56():16. PubMed ID: 26290705
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions.
    Peckarsky BL; Abrams PA; Bolnick DI; Dill LM; Grabowski JH; Luttbeg B; Orrock JL; Peacor SD; Preisser EL; Schmitz OJ; Trussell GC
    Ecology; 2008 Sep; 89(9):2416-25. PubMed ID: 18831163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variation in Neotropical river otter (Lontra longicaudis) diet: Effects of an invasive prey species.
    Juarez-Sanchez D; Blake JG; Hellgren EC
    PLoS One; 2019; 14(10):e0217727. PubMed ID: 31581191
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A barcoding-based scat-analysis assessment of Eurasian otter
    Jang-Liaw NH
    Ecol Evol; 2021 Jul; 11(13):8795-8813. PubMed ID: 34257929
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabarcoding of native and invasive species in stomach contents of Great Lakes fishes.
    Mychek-Londer JG; Chaganti SR; Heath DD
    PLoS One; 2020; 15(8):e0236077. PubMed ID: 32780731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First study on PCBs, organochlorine pesticides, and trace elements in the Eurasian otter (Lutra lutra) from southern Italy.
    Esposito M; De Roma A; D'Alessio N; Danese A; Gallo P; Galiero G; Santoro M
    Sci Total Environ; 2020 Dec; 749():141452. PubMed ID: 32827826
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The adaptation of generalist predators' diet in a multi-prey context: insights from new functional responses.
    Baudrot V; Perasso A; Fritsch C; Giraudoux P; Raoul F
    Ecology; 2016 Jul; 97(7):1832-1841. PubMed ID: 27859163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Go big or … don't? A field-based diet evaluation of freshwater piscivore and prey fish size relationships.
    Gaeta JW; Ahrenstorff TD; Diana JS; Fetzer WW; Jones TS; Lawson ZJ; McInerny MC; Santucci VJ; Vander Zanden MJ
    PLoS One; 2018; 13(3):e0194092. PubMed ID: 29543856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predation on Amphibians May Enhance Eurasian Otter Recovery in Southern Italy.
    Smiroldo G; Gariano P; Balestrieri A; Manenti R; Pini E; Tremolada P
    Zoolog Sci; 2019 Aug; 36(4):273-283. PubMed ID: 34664897
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using the otolith sulcus to aid in prey identification and improve estimates of prey size in diet studies of a piscivorous predator.
    Byrd BL; Hohn AA; Krause JR
    Ecol Evol; 2020 Apr; 10(8):3584-3604. PubMed ID: 32313620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis).
    Newsome SD; Tinker MT; Monson DH; Oftedal OT; Ralls K; Staedler MM; Fogel ML; Estes JA
    Ecology; 2009 Apr; 90(4):961-74. PubMed ID: 19449691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The ontogenetic dietary shift from non-dangerous to dangerous prey in predator-eating predators under capture risk.
    Suzuki Y; Ikemoto M; Yokoi T
    Ecol Evol; 2022 Dec; 12(12):e9609. PubMed ID: 36514549
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.