These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32725672)

  • 1. Electrochemical Intercalation in Atomically Thin van der Waals Materials for Structural Phase Transition and Device Applications.
    Li Y; Yan H; Xu B; Zhen L; Xu CY
    Adv Mater; 2021 Feb; 33(6):e2000581. PubMed ID: 32725672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled Electrochemical Intercalation of Graphene/h-BN van der Waals Heterostructures.
    Zhao SYF; Elbaz GA; Bediako DK; Yu C; Efetov DK; Guo Y; Ravichandran J; Min KA; Hong S; Taniguchi T; Watanabe K; Brus LE; Roy X; Kim P
    Nano Lett; 2018 Jan; 18(1):460-466. PubMed ID: 29268017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.
    Li C; Cao Q; Wang F; Xiao Y; Li Y; Delaunay JJ; Zhu H
    Chem Soc Rev; 2018 Jul; 47(13):4981-5037. PubMed ID: 29736528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layered Intercalation Materials.
    Zhou J; Lin Z; Ren H; Duan X; Shakir I; Huang Y; Duan X
    Adv Mater; 2021 Jun; 33(25):e2004557. PubMed ID: 33984164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intercalation of Layered Materials from Bulk to 2D.
    Stark MS; Kuntz KL; Martens SJ; Warren SC
    Adv Mater; 2019 Jul; 31(27):e1808213. PubMed ID: 31069852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-Based Mixed-Dimensional van der Waals Heterostructures for Advanced Optoelectronics.
    Zhang Z; Lin P; Liao Q; Kang Z; Si H; Zhang Y
    Adv Mater; 2019 Sep; 31(37):e1806411. PubMed ID: 31503377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering the Conduction Behavior of van der Waals Ambipolar Semiconductors.
    Wang F; Tu B; He P; Wang Z; Yin L; Cheng R; Wang J; Fang Q; He J
    Adv Mater; 2019 Jan; 31(1):e1805317. PubMed ID: 30370951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast dynamics in van der Waals heterostructures.
    Jin C; Ma EY; Karni O; Regan EC; Wang F; Heinz TF
    Nat Nanotechnol; 2018 Nov; 13(11):994-1003. PubMed ID: 30397296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities.
    Liang SJ; Cheng B; Cui X; Miao F
    Adv Mater; 2020 Jul; 32(27):e1903800. PubMed ID: 31608514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Magnetic Interactions in van der Waals Heterostructures.
    Huang Y; Wolowiec C; Zhu T; Hu Y; An L; Li Z; Grossman JC; Schuller IK; Ren S
    Nano Lett; 2020 Nov; 20(11):7852-7859. PubMed ID: 33054240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry-Controlled Electron-Phonon Interactions in van der Waals Heterostructures.
    Chen C; Chen X; Yu H; Shao Y; Guo Q; Deng B; Lee S; Ma C; Watanabe K; Taniguchi T; Park JG; Huang S; Yao W; Xia F
    ACS Nano; 2019 Jan; 13(1):552-559. PubMed ID: 30457832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable WSe
    Lin P; Zhu L; Li D; Xu L; Wang ZL
    Nanoscale; 2018 Aug; 10(30):14472-14479. PubMed ID: 30022213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast interfacial transformation from 2D- to 3D-bonded structures in layered Ge-Sb-Te thin films and heterostructures.
    Behrens M; Lotnyk A; Gerlach JW; Hilmi I; Abel T; Lorenz P; Rauschenbach B
    Nanoscale; 2018 Dec; 10(48):22946-22953. PubMed ID: 30500030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vapor-Phase Indium Intercalation in van der Waals Nanofibers of Atomically Thin W
    Natsui R; Shimizu H; Nakanishi Y; Liu Z; Shimamura A; Hung NT; Lin YC; Endo T; Pu J; Kikuchi I; Takenobu T; Okada S; Suenaga K; Saito R; Miyata Y
    ACS Nano; 2023 Mar; 17(6):5561-5569. PubMed ID: 36820647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Van der Waals heterostructures for spintronics and opto-spintronics.
    Sierra JF; Fabian J; Kawakami RK; Roche S; Valenzuela SO
    Nat Nanotechnol; 2021 Aug; 16(8):856-868. PubMed ID: 34282312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive Near-Infrared Photodetectors Based on a Graphene-MoTe
    Zhang K; Fang X; Wang Y; Wan Y; Song Q; Zhai W; Li Y; Ran G; Ye Y; Dai L
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5392-5398. PubMed ID: 28111947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterointerface effects in the electrointercalation of van der Waals heterostructures.
    Bediako DK; Rezaee M; Yoo H; Larson DT; Zhao SYF; Taniguchi T; Watanabe K; Brower-Thomas TL; Kaxiras E; Kim P
    Nature; 2018 Jun; 558(7710):425-429. PubMed ID: 29925970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic Intercalation in Two-Dimensional van der Waals Materials: In Situ Characterization and Electrochemical Control of the Anisotropic Thermal Conductivity of Black Phosphorus.
    Kang JS; Ke M; Hu Y
    Nano Lett; 2017 Mar; 17(3):1431-1438. PubMed ID: 28231004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intercalation Strategy in 2D Materials for Electronics and Optoelectronics.
    Li Z; Li D; Wang H; Chen P; Pi L; Zhou X; Zhai T
    Small Methods; 2021 Sep; 5(9):e2100567. PubMed ID: 34928056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-Engineered van der Waals Interfaces of Mixed-Dimensional Heterostructure Arrays.
    Liu B; Liao Q; Zhang X; Du J; Ou Y; Xiao J; Kang Z; Zhang Z; Zhang Y
    ACS Nano; 2019 Aug; 13(8):9057-9066. PubMed ID: 31322333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.