BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 32725806)

  • 1. Cellular and developmental basis of orofacial clefts.
    Ji Y; Garland MA; Sun B; Zhang S; Reynolds K; McMahon M; Rajakumar R; Islam MS; Liu Y; Chen Y; Zhou CJ
    Birth Defects Res; 2020 Nov; 112(19):1558-1587. PubMed ID: 32725806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis.
    Lan Y; Jiang R
    Curr Top Dev Biol; 2022; 148():13-50. PubMed ID: 35461563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of DNA methylation-mediated cranial neural crest proliferation and differentiation causes orofacial clefts in mice.
    Ulschmid CM; Sun MR; Jabbarpour CR; Steward AC; Rivera-González KS; Cao J; Martin AA; Barnes M; Wicklund L; Madrid A; Papale LA; Joseph DB; Vezina CM; Alisch RS; Lipinski RJ
    Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2317668121. PubMed ID: 38194455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patched1 is required in neural crest cells for the prevention of orofacial clefts.
    Metzis V; Courtney AD; Kerr MC; Ferguson C; Rondón Galeano MC; Parton RG; Wainwright BJ; Wicking C
    Hum Mol Genet; 2013 Dec; 22(24):5026-35. PubMed ID: 23900075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNAs as epigenetic regulators of orofacial development.
    Seelan RS; Pisano MM; Greene RM
    Differentiation; 2022; 124():1-16. PubMed ID: 35144134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis.
    Lough KJ; Byrd KM; Spitzer DC; Williams SE
    J Dent Res; 2017 Oct; 96(11):1210-1220. PubMed ID: 28817360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the 3-hydroxy-3-methyl-glutaryl-CoA reductase induces orofacial defects in zebrafish.
    Signore IA; Jerez C; Figueroa D; Suazo J; Marcelain K; Cerda O; Colombo Flores A
    Birth Defects Res A Clin Mol Teratol; 2016 Oct; 106(10):814-830. PubMed ID: 27488927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetics and signaling mechanisms of orofacial clefts.
    Reynolds K; Zhang S; Sun B; Garland MA; Ji Y; Zhou CJ
    Birth Defects Res; 2020 Nov; 112(19):1588-1634. PubMed ID: 32666711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.
    Welsh IC; Hart J; Brown JM; Hansen K; Rocha Marques M; Aho RJ; Grishina I; Hurtado R; Herzlinger D; Ferretti E; Garcia-Garcia MJ; Selleri L
    J Anat; 2018 Aug; 233(2):222-242. PubMed ID: 29797482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cleft lip and cleft palate in
    Lee S; Sears MJ; Zhang Z; Li H; Salhab I; Krebs P; Xing Y; Nah HD; Williams T; Carstens RP
    Development; 2020 Apr; 147(21):. PubMed ID: 32253237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.
    Tian H; Feng J; Li J; Ho TV; Yuan Y; Liu Y; Brindopke F; Figueiredo JC; Magee W; Sanchez-Lara PA; Chai Y
    Hum Mol Genet; 2017 Mar; 26(5):860-872. PubMed ID: 28069795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic implications in maternal diabetes and metabolic syndrome-associated risk of orofacial clefts.
    Sun B; Reynolds KS; Garland MA; McMahon M; Saha SK; Zhou CJ
    Birth Defects Res; 2023 Nov; 115(19):1835-1850. PubMed ID: 37497595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To Stick or Not to Stick: Adhesions in Orofacial Clefts.
    Antiguas A; Paul BJ; Dunnwald M
    Biology (Basel); 2022 Jan; 11(2):. PubMed ID: 35205020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periderm: Life-cycle and function during orofacial and epidermal development.
    Hammond NL; Dixon J; Dixon MJ
    Semin Cell Dev Biol; 2019 Jul; 91():75-83. PubMed ID: 28803895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common basis for orofacial clefting and cortical interneuronopathy.
    Ansen-Wilson LJ; Everson JL; Fink DM; Kietzman HW; Sullivan R; Lipinski RJ
    Transl Psychiatry; 2018 Jan; 8(1):8. PubMed ID: 29317601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RERE deficiency contributes to the development of orofacial clefts in humans and mice.
    Kim BJ; Zaveri HP; Kundert PN; Jordan VK; Scott TM; Carmichael J; Scott DA
    Hum Mol Genet; 2021 May; 30(7):595-602. PubMed ID: 33772547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orofacial clefts embryology, classification, epidemiology, and genetics.
    Nasreddine G; El Hajj J; Ghassibe-Sabbagh M
    Mutat Res Rev Mutat Res; 2021; 787():108373. PubMed ID: 34083042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heterogeneous genetic architectures of orofacial clefts.
    Robinson K; Curtis SW; Leslie EJ
    Trends Genet; 2024 May; 40(5):410-421. PubMed ID: 38480105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Face morphogenesis is promoted by Pbx-dependent EMT via regulation of
    Losa M; Risolino M; Li B; Hart J; Quintana L; Grishina I; Yang H; Choi IF; Lewicki P; Khan S; Aho R; Feenstra J; Vincent CT; Brown AMC; Ferretti E; Williams T; Selleri L
    Development; 2018 Mar; 145(5):. PubMed ID: 29437830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonic hedgehog regulation of
    Everson JL; Fink DM; Yoon JW; Leslie EJ; Kietzman HW; Ansen-Wilson LJ; Chung HM; Walterhouse DO; Marazita ML; Lipinski RJ
    Development; 2017 Jun; 144(11):2082-2091. PubMed ID: 28506991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.