BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32726183)

  • 21. Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels.
    Zanic M; Widlund PO; Hyman AA; Howard J
    Nat Cell Biol; 2013 Jun; 15(6):688-93. PubMed ID: 23666085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency.
    Podolski M; Mahamdeh M; Howard J
    J Biol Chem; 2014 Oct; 289(41):28087-93. PubMed ID: 25172511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region.
    Widlund PO; Stear JH; Pozniakovsky A; Zanic M; Reber S; Brouhard GJ; Hyman AA; Howard J
    Proc Natl Acad Sci U S A; 2011 Feb; 108(7):2741-6. PubMed ID: 21282620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation.
    Byrnes AE; Slep KC
    J Cell Biol; 2017 Jun; 216(6):1641-1657. PubMed ID: 28512144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular insight into how γ-TuRC makes microtubules.
    Thawani A; Petry S
    J Cell Sci; 2021 Jul; 134(14):. PubMed ID: 34297125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. XMAP215: a tip tracker that really moves.
    Asbury CL
    Cell; 2008 Jan; 132(1):19-20. PubMed ID: 18191214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microtubule nucleating gamma-TuSC assembles structures with 13-fold microtubule-like symmetry.
    Kollman JM; Polka JK; Zelter A; Davis TN; Agard DA
    Nature; 2010 Aug; 466(7308):879-82. PubMed ID: 20631709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase.
    Ayaz P; Ye X; Huddleston P; Brautigam CA; Rice LM
    Science; 2012 Aug; 337(6096):857-60. PubMed ID: 22904013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microtubule-associated proteins promote microtubule generation in the absence of γ-tubulin in human colon cancer cells.
    Tsuchiya K; Goshima G
    J Cell Biol; 2021 Dec; 220(12):. PubMed ID: 34779859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular assembly of the principal microtubule nucleator γ-TuRC.
    Würtz M; Zupa E; Atorino ES; Neuner A; Böhler A; Rahadian AS; Vermeulen BJA; Tonon G; Eustermann S; Schiebel E; Pfeffer S
    Nat Commun; 2022 Jan; 13(1):473. PubMed ID: 35078983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array.
    Fox JC; Howard AE; Currie JD; Rogers SL; Slep KC
    Mol Biol Cell; 2014 Aug; 25(16):2375-92. PubMed ID: 24966168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microtubule-associated proteins control the kinetics of microtubule nucleation.
    Wieczorek M; Bechstedt S; Chaaban S; Brouhard GJ
    Nat Cell Biol; 2015 Jul; 17(7):907-16. PubMed ID: 26098575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. XMAP215 promotes microtubule catastrophe by disrupting the growing microtubule end.
    Farmer V; Arpağ G; Hall SL; Zanic M
    J Cell Biol; 2021 Oct; 220(10):. PubMed ID: 34324632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drosophila Dgt6 interacts with Ndc80, Msps/XMAP215, and gamma-tubulin to promote kinetochore-driven MT formation.
    Bucciarelli E; Pellacani C; Naim V; Palena A; Gatti M; Somma MP
    Curr Biol; 2009 Nov; 19(21):1839-45. PubMed ID: 19836241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes.
    Singh P; Thomas GE; Gireesh KK; Manna TK
    J Biol Chem; 2014 Nov; 289(46):31719-31735. PubMed ID: 25246530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microtubule Nucleation Properties of Single Human γTuRCs Explained by Their Cryo-EM Structure.
    Consolati T; Locke J; Roostalu J; Chen ZA; Gannon J; Asthana J; Lim WM; Martino F; Cvetkovic MA; Rappsilber J; Costa A; Surrey T
    Dev Cell; 2020 Jun; 53(5):603-617.e8. PubMed ID: 32433913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly.
    Hung LY; Chen HL; Chang CW; Li BR; Tang TK
    Mol Biol Cell; 2004 Jun; 15(6):2697-706. PubMed ID: 15047868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Promiscuous Binding of Microprotein Mozart1 to γ-Tubulin Complex Mediates Specific Subcellular Targeting to Control Microtubule Array Formation.
    Huang TL; Wang HJ; Chang YC; Wang SW; Hsia KC
    Cell Rep; 2020 Jun; 31(13):107836. PubMed ID: 32610137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microtubule nucleation by γ-tubulin complexes and beyond.
    Tovey CA; Conduit PT
    Essays Biochem; 2018 Dec; 62(6):765-780. PubMed ID: 30315097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cryo-EM structure of a γ-TuSC elucidates architecture and regulation of minimal microtubule nucleation systems.
    Zupa E; Zheng A; Neuner A; Würtz M; Liu P; Böhler A; Schiebel E; Pfeffer S
    Nat Commun; 2020 Nov; 11(1):5705. PubMed ID: 33177498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.