These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 32726189)
1. Functional survival forests for multivariate longitudinal outcomes: Dynamic prediction of Alzheimer's disease progression. Lin J; Li K; Luo S Stat Methods Med Res; 2021 Jan; 30(1):99-111. PubMed ID: 32726189 [TBL] [Abstract][Full Text] [Related]
2. Dynamic prediction of Alzheimer's disease progression using features of multiple longitudinal outcomes and time-to-event data. Li K; Luo S Stat Med; 2019 Oct; 38(24):4804-4818. PubMed ID: 31386218 [TBL] [Abstract][Full Text] [Related]
3. Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker. Pickett KL; Suresh K; Campbell KR; Davis S; Juarez-Colunga E BMC Med Res Methodol; 2021 Oct; 21(1):216. PubMed ID: 34657597 [TBL] [Abstract][Full Text] [Related]
4. Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer's disease. Li K; Luo S Stat Methods Med Res; 2019 Feb; 28(2):327-342. PubMed ID: 28750578 [TBL] [Abstract][Full Text] [Related]
5. Longitudinal Exposure-Response Modeling of Multiple Indicators of Alzheimer's Disease Progression. Polhamus DG; Dolton MJ; Rogers JA; Honigberg L; Jin JY; Quartino A J Prev Alzheimers Dis; 2023; 10(2):212-222. PubMed ID: 36946448 [TBL] [Abstract][Full Text] [Related]
6. Joint model for survival and multivariate sparse functional data with application to a study of Alzheimer's Disease. Li C; Xiao L; Luo S Biometrics; 2022 Jun; 78(2):435-447. PubMed ID: 33501651 [TBL] [Abstract][Full Text] [Related]
7. A comparative study of forest methods for time-to-event data: variable selection and predictive performance. Liu Y; Zhou S; Wei H; An S BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138 [TBL] [Abstract][Full Text] [Related]
8. Individual risk prediction: Comparing random forests with Cox proportional-hazards model by a simulation study. Baralou V; Kalpourtzi N; Touloumi G Biom J; 2023 Aug; 65(6):e2100380. PubMed ID: 36169048 [TBL] [Abstract][Full Text] [Related]
9. Bayesian inference and dynamic prediction of multivariate joint model with functional data: An application to Alzheimer's disease. Zou H; Li K; Zeng D; Luo S; Stat Med; 2021 Dec; 40(30):6855-6872. PubMed ID: 34649301 [TBL] [Abstract][Full Text] [Related]
10. Functional joint model for longitudinal and time-to-event data: an application to Alzheimer's disease. Li K; Luo S Stat Med; 2017 Sep; 36(22):3560-3572. PubMed ID: 28664662 [TBL] [Abstract][Full Text] [Related]
11. STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data. Hyun JW; Li Y; Huang C; Styner M; Lin W; Zhu H; Neuroimage; 2016 Jul; 134():550-562. PubMed ID: 27103140 [TBL] [Abstract][Full Text] [Related]
12. FLCRM: Functional linear cox regression model. Kong D; Ibrahim JG; Lee E; Zhu H Biometrics; 2018 Mar; 74(1):109-117. PubMed ID: 28863246 [TBL] [Abstract][Full Text] [Related]
13. Longitudinal survival analysis and two-group comparison for predicting the progression of mild cognitive impairment to Alzheimer's disease. Platero C; Tobar MC J Neurosci Methods; 2020 Jul; 341():108698. PubMed ID: 32534272 [TBL] [Abstract][Full Text] [Related]
14. Bayesian Functional Joint Models for Multivariate Longitudinal and Time-to-Event Data. Li K; Luo S Comput Stat Data Anal; 2019 Jan; 129():14-29. PubMed ID: 30559575 [TBL] [Abstract][Full Text] [Related]
15. Development and visualization of a risk prediction model for metabolic syndrome: a longitudinal cohort study based on health check-up data in China. Liu W; Tang X; Cui T; Zhao H; Song G Front Nutr; 2023; 10():1286654. PubMed ID: 38075230 [TBL] [Abstract][Full Text] [Related]
16. Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study. Wang Y; Ibrahim JG; Zhu H Biometrics; 2020 Dec; 76(4):1109-1119. PubMed ID: 32010968 [TBL] [Abstract][Full Text] [Related]
17. Survival prediction models: an introduction to discrete-time modeling. Suresh K; Severn C; Ghosh D BMC Med Res Methodol; 2022 Jul; 22(1):207. PubMed ID: 35883032 [TBL] [Abstract][Full Text] [Related]
18. Modeling sparse longitudinal data on Riemannian manifolds. Dai X; Lin Z; Müller HG Biometrics; 2021 Dec; 77(4):1328-1341. PubMed ID: 33034049 [TBL] [Abstract][Full Text] [Related]
19. Dynamic prediction with time-dependent marker in survival analysis using supervised functional principal component analysis. Shi H; Jiang S; Cao J Stat Med; 2022 Aug; 41(18):3547-3560. PubMed ID: 35574725 [TBL] [Abstract][Full Text] [Related]
20. Prognosis prediction of extremity and trunk wall soft-tissue sarcomas treated with surgical resection with radiomic analysis based on random survival forest. Yang Y; Ma X; Wang Y; Ding X Updates Surg; 2022 Feb; 74(1):355-365. PubMed ID: 34003477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]