BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 32726370)

  • 1. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique.
    Quosay AA; Knez D; Ziaja J
    PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.
    Guo C; Wei M; Liu H
    PLoS One; 2018; 13(1):e0188480. PubMed ID: 29320489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracturing-Fluid Flowback Simulation with Consideration of Proppant Transport in Hydraulically Fractured Shale Wells.
    Wang F; Chen Q; Lyu X; Zhang S
    ACS Omega; 2020 Apr; 5(16):9491-9502. PubMed ID: 32363301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Experimental Study of Fracture Conductivity of Carbonate Rocks under Different Stimulation Types.
    Xiao H; Xia X; Wang C; Tan X; Zhang H
    ACS Omega; 2023 Dec; 8(51):49175-49190. PubMed ID: 38162798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart magnetic markers use in hydraulic fracturing.
    Zawadzki J; Bogacki J
    Chemosphere; 2016 Nov; 162():23-30. PubMed ID: 27475294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation on fracturing effects in hydraulic sand fracturing with acoustic emission and 3d laser scanning.
    Zhang S; Wang C; Zhu G; Gao G; Zhou H
    Sci Rep; 2023 Jul; 13(1):11539. PubMed ID: 37460604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling fate and transport of hydraulic fracturing fluid in the presence of abandoned wells.
    Taherdangkoo R; Tatomir A; Anighoro T; Sauter M
    J Contam Hydrol; 2019 Feb; 221():58-68. PubMed ID: 30679092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to evaluate hydraulic fracture using proppant detection.
    Liu J; Zhang F; Gardner RP; Hou G; Zhang Q; Li H
    Appl Radiat Isot; 2015 Nov; 105():139-143. PubMed ID: 26296059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.
    Edwards RWJ; Doster F; Celia MA; Bandilla KW
    Environ Sci Technol; 2017 Dec; 51(23):13779-13787. PubMed ID: 29086564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs.
    Zhang F; Ma G; Liu X; Tao Y; Feng D; Li R
    PLoS One; 2018; 13(4):e0195363. PubMed ID: 29621295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning-Based Propped Fracture Conductivity Correlations of Several Shale Formations.
    Desouky M; Tariq Z; Aljawad MS; Alhoori H; Mahmoud M; Abdulraheem A
    ACS Omega; 2021 Jul; 6(29):18782-18792. PubMed ID: 34337218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of Proppant Flowback on Fracture Conductivity in Different Fracturing Fluids and Flowback Conditions.
    Guo S; Wang B; Li Y; Hao H; Zhang M; Liang T
    ACS Omega; 2022 Mar; 7(8):6682-6690. PubMed ID: 35252663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of tight gas reservoir fracturing parameters via gradient boosting regression modeling.
    Yang H; Liu X; Chu X; Xie B; Zhu G; Li H; Yang J
    Heliyon; 2024 Mar; 10(5):e27015. PubMed ID: 38463839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation and Application of High-Efficiency Network Fracturing Technology for Deep Shale Gas in the Southern Sichuan Basin.
    Zhao Z; Zheng Y; Zeng B; Song Y
    ACS Omega; 2022 Apr; 7(16):14276-14282. PubMed ID: 35573210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and Reactive Transport Processes Associated with Hydraulic Fracturing of Unconventional Oil/Gas Shales.
    Jew AD; Druhan JL; Ihme M; Kovscek AR; Battiato I; Kaszuba JP; Bargar JR; Brown GE
    Chem Rev; 2022 May; 122(9):9198-9263. PubMed ID: 35404590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Critical Review of the Physicochemical Impacts of Water Chemistry on Shale in Hydraulic Fracturing Systems.
    Khan HJ; Spielman-Sun E; Jew AD; Bargar J; Kovscek A; Druhan JL
    Environ Sci Technol; 2021 Feb; 55(3):1377-1394. PubMed ID: 33428391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineral Reactions in Shale Gas Reservoirs: Barite Scale Formation from Reusing Produced Water As Hydraulic Fracturing Fluid.
    Paukert Vankeuren AN; Hakala JA; Jarvis K; Moore JE
    Environ Sci Technol; 2017 Aug; 51(16):9391-9402. PubMed ID: 28723084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Simulation Study on the Effect of Preinjected CO
    Yu H; Ding Y; Wang Y; Zhou W
    ACS Omega; 2024 Mar; 9(9):10769-10781. PubMed ID: 38463313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Proppant Size on the Proppant Embedment Depth.
    Ding X; Wang T; Dong M; Chen N
    ACS Omega; 2022 Oct; 7(39):35044-35054. PubMed ID: 36211084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydraulic fracture extending into network in shale: reviewing influence factors and their mechanism.
    Ren L; Zhao J; Hu Y
    ScientificWorldJournal; 2014; 2014():847107. PubMed ID: 25032240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.