These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 32726506)
1. Gait-combined transcranial alternating current stimulation modulates cortical control of muscle activities during gait. Kitatani R; Koganemaru S; Maeda A; Mikami Y; Matsuhashi M; Mima T; Yamada S Eur J Neurosci; 2020 Dec; 52(12):4791-4802. PubMed ID: 32726506 [TBL] [Abstract][Full Text] [Related]
2. Individualized beta-band oscillatory transcranial direct current stimulation over the primary motor cortex enhances corticomuscular coherence and corticospinal excitability in healthy individuals. Kudo D; Koseki T; Katagiri N; Yoshida K; Takano K; Jin M; Nito M; Tanabe S; Yamaguchi T Brain Stimul; 2022; 15(1):46-52. PubMed ID: 34742996 [TBL] [Abstract][Full Text] [Related]
3. Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. Ibáñez J; Zicher B; Brown KE; Rocchi L; Casolo A; Del Vecchio A; Spampinato D; Vollette CA; Rothwell JC; Baker SN; Farina D J Physiol; 2023 Aug; 601(15):3187-3199. PubMed ID: 35776944 [TBL] [Abstract][Full Text] [Related]
4. Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability. Schilberg L; Engelen T; Ten Oever S; Schuhmann T; de Gelder B; de Graaf TA; Sack AT Cortex; 2018 Jun; 103():142-152. PubMed ID: 29635161 [TBL] [Abstract][Full Text] [Related]
5. Gait-synchronized oscillatory brain stimulation modulates common neural drives to ankle muscles in patients after stroke: A pilot study. Kitatani R; Koganemaru S; Maeda A; Mikami Y; Matsuhashi M; Mima T; Yamada S Neurosci Res; 2020 Jul; 156():256-264. PubMed ID: 31726081 [TBL] [Abstract][Full Text] [Related]
6. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control. Cappon D; D'Ostilio K; Garraux G; Rothwell J; Bisiacchi P Brain Stimul; 2016; 9(4):518-24. PubMed ID: 27038707 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of corticospinal motor control during overground and treadmill walking in humans. Roeder L; Boonstra TW; Smith SS; Kerr GK J Neurophysiol; 2018 Sep; 120(3):1017-1031. PubMed ID: 29847229 [TBL] [Abstract][Full Text] [Related]
8. The effects of transcranial alternating current stimulation (tACS) at individual alpha peak frequency (iAPF) on motor cortex excitability in young and elderly adults. Fresnoza S; Christova M; Feil T; Gallasch E; Körner C; Zimmer U; Ischebeck A Exp Brain Res; 2018 Oct; 236(10):2573-2588. PubMed ID: 29943239 [TBL] [Abstract][Full Text] [Related]
9. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Naro A; Bramanti A; Leo A; Manuli A; Sciarrone F; Russo M; Bramanti P; Calabrò RS Brain Struct Funct; 2017 Aug; 222(6):2891-2906. PubMed ID: 28064346 [TBL] [Abstract][Full Text] [Related]
10. Isometric agonist and antagonist muscle activation interacts differently with 140-Hz transcranial alternating current stimulation aftereffects at different intensities. Shorafa Y; Halawa I; Hewitt M; Nitsche MA; Antal A; Paulus W J Neurophysiol; 2021 Jul; 126(1):340-348. PubMed ID: 34191638 [TBL] [Abstract][Full Text] [Related]
11. Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study. Guerra A; Ranieri F; Falato E; Musumeci G; Di Santo A; Asci F; Di Pino G; Suppa A; Berardelli A; Di Lazzaro V Sci Rep; 2020 May; 10(1):7695. PubMed ID: 32376946 [TBL] [Abstract][Full Text] [Related]
12. Corticospinal excitability during walking in humans with absent and partial body weight support. Knikou M; Hajela N; Mummidisetty CK Clin Neurophysiol; 2013 Dec; 124(12):2431-8. PubMed ID: 23810634 [TBL] [Abstract][Full Text] [Related]
13. Descending neural drives to ankle muscles during gait and their relationships with clinical functions in patients after stroke. Kitatani R; Ohata K; Aga Y; Mashima Y; Hashiguchi Y; Wakida M; Maeda A; Yamada S Clin Neurophysiol; 2016 Feb; 127(2):1512-1520. PubMed ID: 26601960 [TBL] [Abstract][Full Text] [Related]
14. Anodal transcranial patterned stimulation of the motor cortex during gait can induce activity-dependent corticospinal plasticity to alter human gait. Koganemaru S; Mikami Y; Maezawa H; Matsuhashi M; Ikeda S; Ikoma K; Mima T PLoS One; 2018; 13(12):e0208691. PubMed ID: 30576315 [TBL] [Abstract][Full Text] [Related]
15. Exploring parameters of gamma transcranial alternating current stimulation (tACS) and full-spectrum transcranial random noise stimulation (tRNS) on human pharyngeal cortical excitability. Zhang M; Cheng I; Sasegbon A; Dou Z; Hamdy S Neurogastroenterol Motil; 2021 Sep; 33(9):e14173. PubMed ID: 34081376 [TBL] [Abstract][Full Text] [Related]
16. Cumulative effects of single TMS pulses during beta-tACS are stimulation intensity-dependent. Raco V; Bauer R; Norim S; Gharabaghi A Brain Stimul; 2017; 10(6):1055-1060. PubMed ID: 28779945 [TBL] [Abstract][Full Text] [Related]
17. The effect of transcranial magnetic stimulation and peripheral nerve stimulation on corticomuscular coherence in humans. Hansen NL; Nielsen JB J Physiol; 2004 Nov; 561(Pt 1):295-306. PubMed ID: 15358809 [TBL] [Abstract][Full Text] [Related]
18. Effects of Slow Oscillatory Transcranial Alternating Current Stimulation on Motor Cortical Excitability Assessed by Transcranial Magnetic Stimulation. Geffen A; Bland N; Sale MV Front Hum Neurosci; 2021; 15():726604. PubMed ID: 34588969 [TBL] [Abstract][Full Text] [Related]
19. Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Pozdniakov I; Vorobiova AN; Galli G; Rossi S; Feurra M Sci Rep; 2021 Feb; 11(1):3854. PubMed ID: 33594133 [TBL] [Abstract][Full Text] [Related]
20. Neurophysiological aftereffects of 10 Hz and 20 Hz transcranial alternating current stimulation over bilateral sensorimotor cortex. Lafleur LP; Klees-Themens G; Chouinard-Leclaire C; Larochelle-Brunet F; Tremblay S; Lepage JF; Théoret H Brain Res; 2020 Jan; 1727():146542. PubMed ID: 31712086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]