These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32726586)

  • 21. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition.
    Chang JW; Cognetta AB; Niphakis MJ; Cravatt BF
    ACS Chem Biol; 2013 Jul; 8(7):1590-9. PubMed ID: 23701408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemoproteomic, biochemical and pharmacological approaches in the discovery of inhibitors targeting human α/β-hydrolase domain containing 11 (ABHD11).
    Navia-Paldanius D; Patel JZ; López Navarro M; Jakupović H; Goffart S; Pasonen-Seppänen S; Nevalainen TJ; Jääskeläinen T; Laitinen T; Laitinen JT; Savinainen JR
    Eur J Pharm Sci; 2016 Oct; 93():253-63. PubMed ID: 27544863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity-based protein profiling of infected plants.
    Kaschani F; Gu C; van der Hoorn RA
    Methods Mol Biol; 2012; 835():47-59. PubMed ID: 22183646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.
    Simon GM; Cravatt BF
    J Biol Chem; 2010 Apr; 285(15):11051-5. PubMed ID: 20147750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Profiling sirtuin activity using Copper-free click chemistry.
    Curry AM; Cohen I; Zheng S; Wohlfahrt J; White DS; Donu D; Cen Y
    Bioorg Chem; 2021 Dec; 117():105413. PubMed ID: 34655842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DIGE-ABPP by click chemistry: pairwise comparison of serine hydrolase activities from the apoplast of infected plants.
    Hong TN; van der Hoorn RA
    Methods Mol Biol; 2014; 1127():183-94. PubMed ID: 24643562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel inhibitors and activity-based probes targeting serine proteases.
    Ferguson TEG; Reihill JA; Martin SL; Walker B
    Front Chem; 2022; 10():1006618. PubMed ID: 36247662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coumarin as a structural component of substrates and probes for serine and cysteine proteases.
    Breidenbach J; Bartz U; Gütschow M
    Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140445. PubMed ID: 32405284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Competitive ABPP of Serine Hydrolases: A Case Study on DAGL-Alpha.
    Baggelaar MP; Van der Stelt M
    Methods Mol Biol; 2017; 1491():161-169. PubMed ID: 27778288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective inhibition of plant serine hydrolases by agrochemicals revealed by competitive ABPP.
    Kaschani F; Nickel S; Pandey B; Cravatt BF; Kaiser M; van der Hoorn RA
    Bioorg Med Chem; 2012 Jan; 20(2):597-600. PubMed ID: 21764588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monocyclic β-lactams are selective, mechanism-based inhibitors of rhomboid intramembrane proteases.
    Pierrat OA; Strisovsky K; Christova Y; Large J; Ansell K; Bouloc N; Smiljanic E; Freeman M
    ACS Chem Biol; 2011 Apr; 6(4):325-35. PubMed ID: 21175222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery libraries targeting the major enzyme classes: the serine hydrolases.
    Otrubova K; Srinivasan V; Boger DL
    Bioorg Med Chem Lett; 2014 Aug; 24(16):3807-13. PubMed ID: 25037918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity-Based Probes for the High Temperature Requirement A Serine Proteases.
    Nam HY; Song D; Eo J; Choi NE; Hong JA; Hong KT; Lee JS; Seo J; Lee J
    ACS Chem Biol; 2020 Sep; 15(9):2346-2354. PubMed ID: 32786264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes.
    Edgington LE; Verdoes M; Bogyo M
    Curr Opin Chem Biol; 2011 Dec; 15(6):798-805. PubMed ID: 22098719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of activity-based protein profiling to study enzyme function in adipocytes.
    Galmozzi A; Dominguez E; Cravatt BF; Saez E
    Methods Enzymol; 2014; 538():151-69. PubMed ID: 24529438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances and concepts in substrate specificity determination of proteases using tailored libraries of fluorogenic substrates with unnatural amino acids.
    Rut W; Kasperkiewicz P; Byzia A; Poreba M; Groborz K; Drag M
    Biol Chem; 2015 Apr; 396(4):329-37. PubMed ID: 25719315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Covalent activity-based probes for imaging of serine proteases.
    Skorenski M; Ji S; Verhelst SHL
    Biochem Soc Trans; 2024 Apr; 52(2):923-935. PubMed ID: 38629725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel quantification method for serine hydrolases in cellular expression system using fluorophosphonate-biotin probe.
    Abdel-Daim A; Ohura K; Imai T
    Eur J Pharm Sci; 2018 Mar; 114():267-274. PubMed ID: 29289670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative assessment of substrates and activity based probes as tools for non-invasive optical imaging of cysteine protease activity.
    Blum G; Weimer RM; Edgington LE; Adams W; Bogyo M
    PLoS One; 2009 Jul; 4(7):e6374. PubMed ID: 19636372
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.