These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 32726619)
1. Proximal Tubule mTORC1 Is a Central Player in the Pathophysiology of Diabetic Nephropathy and Its Correction by SGLT2 Inhibitors. Kogot-Levin A; Hinden L; Riahi Y; Israeli T; Tirosh B; Cerasi E; Mizrachi EB; Tam J; Mosenzon O; Leibowitz G Cell Rep; 2020 Jul; 32(4):107954. PubMed ID: 32726619 [TBL] [Abstract][Full Text] [Related]
2. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844 [TBL] [Abstract][Full Text] [Related]
3. Cardioprotection conferred by sodium-glucose cotransporter 2 inhibitors: a renal proximal tubule perspective. Silva Dos Santos D; Polidoro JZ; Borges-Júnior FA; Girardi ACC Am J Physiol Cell Physiol; 2020 Feb; 318(2):C328-C336. PubMed ID: 31721613 [TBL] [Abstract][Full Text] [Related]
4. Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function. Hinden L; Ahmad M; Hamad S; Nemirovski A; Szanda G; Glasmacher S; Kogot-Levin A; Abramovitch R; Thorens B; Gertsch J; Leibowitz G; Tam J Nat Commun; 2022 Apr; 13(1):1783. PubMed ID: 35379807 [TBL] [Abstract][Full Text] [Related]
5. Renal protection by sodium-glucose cotransporter 2 inhibitors and its underlying mechanisms in diabetic kidney disease. Mima A J Diabetes Complications; 2018 Jul; 32(7):720-725. PubMed ID: 29880432 [TBL] [Abstract][Full Text] [Related]
6. SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Tuttle KR; Brosius FC; Cavender MA; Fioretto P; Fowler KJ; Heerspink HJL; Manley T; McGuire DK; Molitch ME; Mottl AK; Perreault L; Rosas SE; Rossing P; Sola L; Vallon V; Wanner C; Perkovic V Am J Kidney Dis; 2021 Jan; 77(1):94-109. PubMed ID: 33121838 [TBL] [Abstract][Full Text] [Related]
7. SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition. Tomita I; Kume S; Sugahara S; Osawa N; Yamahara K; Yasuda-Yamahara M; Takeda N; Chin-Kanasaki M; Kaneko T; Mayoux E; Mark M; Yanagita M; Ogita H; Araki SI; Maegawa H Cell Metab; 2020 Sep; 32(3):404-419.e6. PubMed ID: 32726607 [TBL] [Abstract][Full Text] [Related]
8. SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule? Bertinat R; Nualart F; Yáñez AJ J Cell Physiol; 2016 Aug; 231(8):1635-7. PubMed ID: 26661279 [TBL] [Abstract][Full Text] [Related]
9. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Aroor AR; Das NA; Carpenter AJ; Habibi J; Jia G; Ramirez-Perez FI; Martinez-Lemus L; Manrique-Acevedo CM; Hayden MR; Duta C; Nistala R; Mayoux E; Padilla J; Chandrasekar B; DeMarco VG Cardiovasc Diabetol; 2018 Jul; 17(1):108. PubMed ID: 30060748 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of Protective Effects of SGLT2 Inhibitors in Cardiovascular Disease and Renal Dysfunction. Liu B; Wang Y; Zhang Y; Yan B Curr Top Med Chem; 2019; 19(20):1818-1849. PubMed ID: 31456521 [TBL] [Abstract][Full Text] [Related]
12. Model-Based Evaluation of Proximal Sodium Reabsorption Through SGLT2 in Health and Diabetes and the Effect of Inhibition With Canagliflozin. Brady JA; Hallow KM J Clin Pharmacol; 2018 Mar; 58(3):377-385. PubMed ID: 29144539 [TBL] [Abstract][Full Text] [Related]
13. SGLT2 Inhibitors and the Diabetic Kidney. Fioretto P; Zambon A; Rossato M; Busetto L; Vettor R Diabetes Care; 2016 Aug; 39 Suppl 2():S165-71. PubMed ID: 27440829 [TBL] [Abstract][Full Text] [Related]
14. SGLT2 Inhibition for the Prevention and Treatment of Diabetic Kidney Disease: A Review. Alicic RZ; Johnson EJ; Tuttle KR Am J Kidney Dis; 2018 Aug; 72(2):267-277. PubMed ID: 29866460 [TBL] [Abstract][Full Text] [Related]
16. Increased megalin expression in early type 2 diabetes: role of insulin-signaling pathways. Bryniarski MA; Yee BM; Jaffri I; Chaves LD; Yu JA; Guan X; Ghavam N; Yacoub R; Morris ME Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1191-F1207. PubMed ID: 29949391 [TBL] [Abstract][Full Text] [Related]
17. Sodium-glucose cotransporter 2 inhibition suppresses HIF-1α-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cai T; Ke Q; Fang Y; Wen P; Chen H; Yuan Q; Luo J; Zhang Y; Sun Q; Lv Y; Zen K; Jiang L; Zhou Y; Yang J Cell Death Dis; 2020 May; 11(5):390. PubMed ID: 32444604 [TBL] [Abstract][Full Text] [Related]
18. Canagliflozin regulates metabolic reprogramming in diabetic kidney disease by inducing fasting-like and aestivation-like metabolic patterns. Shao M; Chen D; Wang Q; Guo F; Wei F; Zhang W; Gan T; Luo Y; Fan X; Du P; Liu Y; Ma X; Ren G; Song Y; Zhao Y; Qin G Diabetologia; 2024 Apr; 67(4):738-754. PubMed ID: 38236410 [TBL] [Abstract][Full Text] [Related]
19. mTORC1 and SGLT2 Inhibitors-A Therapeutic Perspective for Diabetic Cardiomyopathy. Saha S; Fang X; Green CD; Das A Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894760 [TBL] [Abstract][Full Text] [Related]
20. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes. Schaub JA; AlAkwaa FM; McCown PJ; Naik AS; Nair V; Eddy S; Menon R; Otto EA; Demeke D; Hartman J; Fermin D; O'Connor CL; Subramanian L; Bitzer M; Harned R; Ladd P; Pyle L; Pennathur S; Inoki K; Hodgin JB; Brosius FC; Nelson RG; Kretzler M; Bjornstad P J Clin Invest; 2023 Mar; 133(5):. PubMed ID: 36637914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]