These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32726633)

  • 21. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus.
    Nyíri G; Stephenson FA; Freund TF; Somogyi P
    Neuroscience; 2003; 119(2):347-63. PubMed ID: 12770551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex.
    Ye Q; Miao QL
    Matrix Biol; 2013 Aug; 32(6):352-63. PubMed ID: 23597636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synapse-specific control of experience-dependent plasticity by presynaptic NMDA receptors.
    Larsen RS; Smith IT; Miriyala J; Han JE; Corlew RJ; Smith SL; Philpot BD
    Neuron; 2014 Aug; 83(4):879-93. PubMed ID: 25144876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binocular deprivation induces both age-dependent and age-independent forms of plasticity in parvalbumin inhibitory neuron visual response properties.
    Feese BD; Pafundo DE; Schmehl MN; Kuhlman SJ
    J Neurophysiol; 2018 Feb; 119(2):738-751. PubMed ID: 29118195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gain control of sensory input across polysynaptic circuitries in mouse visual cortex by a single G protein-coupled receptor type (5-HT
    Barzan R; Bozkurt B; Nejad MM; Süß ST; Surdin T; Böke H; Spoida K; Azimi Z; Grömmke M; Eickelbeck D; Mark MD; Rohr L; Siveke I; Cheng S; Herlitze S; Jancke D
    Nat Commun; 2024 Sep; 15(1):8078. PubMed ID: 39277631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deletion of the Mitochondrial Matrix Protein CyclophilinD Prevents Parvalbumin Interneuron Dysfunctionand Cognitive Deficits in a Mouse Model of NMDA Hypofunction.
    Phensy A; Lindquist KL; Lindquist KA; Bairuty D; Gauba E; Guo L; Tian J; Du H; Kroener S
    J Neurosci; 2020 Aug; 40(32):6121-6132. PubMed ID: 32605939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activating parvalbumin-expressing interneurons produces iceberg effects in mouse primary visual cortex neurons.
    Shapiro JT; Gosselin EAR; Michaud NM; Crowder NA
    Neurosci Lett; 2022 Aug; 786():136804. PubMed ID: 35843471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity.
    He LJ; Liu N; Cheng TL; Chen XJ; Li YD; Shu YS; Qiu ZL; Zhang XH
    Nat Commun; 2014 Oct; 5():5036. PubMed ID: 25297674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyramidal cell activity levels affect the polarity of activity-induced gene transcription changes in interneurons.
    Parrish RR; Codadu NK; Racca C; Trevelyan AJ
    J Neurophysiol; 2018 Nov; 120(5):2358-2367. PubMed ID: 30110232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vesicular GABA Transporter Is Necessary for Transplant-Induced Critical Period Plasticity in Mouse Visual Cortex.
    Priya R; Rakela B; Kaneko M; Spatazza J; Larimer P; Hoseini MS; Hasenstaub AR; Alvarez-Buylla A; Stryker MP
    J Neurosci; 2019 Apr; 39(14):2635-2648. PubMed ID: 30705101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex.
    Philpot BD; Sekhar AK; Shouval HZ; Bear MF
    Neuron; 2001 Jan; 29(1):157-69. PubMed ID: 11182088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. M2 receptors are required for spatiotemporal sequence learning in mouse primary visual cortex.
    Sarkar S; Martinez Reyes C; Jensen CM; Gavornik JP
    J Neurophysiol; 2024 Jun; 131(6):1213-1225. PubMed ID: 38629848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-Modal Reinstatement of Thalamocortical Plasticity Accelerates Ocular Dominance Plasticity in Adult Mice.
    Rodríguez G; Chakraborty D; Schrode KM; Saha R; Uribe I; Lauer AM; Lee HK
    Cell Rep; 2018 Sep; 24(13):3433-3440.e4. PubMed ID: 30257205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in visual cortex.
    Philpot BD; Weisberg MP; Ramos MS; Sawtell NB; Tang YP; Tsien JZ; Bear MF
    Neuropharmacology; 2001 Nov; 41(6):762-70. PubMed ID: 11640931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual deprivation modifies both presynaptic glutamate release and the composition of perisynaptic/extrasynaptic NMDA receptors in adult visual cortex.
    Yashiro K; Corlew R; Philpot BD
    J Neurosci; 2005 Dec; 25(50):11684-92. PubMed ID: 16354927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuromodulatory control of localized dendritic spiking in critical period cortex.
    Yaeger CE; Ringach DL; Trachtenberg JT
    Nature; 2019 Mar; 567(7746):100-104. PubMed ID: 30787434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane Potential Dynamics of Spontaneous and Visually Evoked Gamma Activity in V1 of Awake Mice.
    Perrenoud Q; Pennartz CM; Gentet LJ
    PLoS Biol; 2016 Feb; 14(2):e1002383. PubMed ID: 26890123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maternal Experience-Dependent Cortical Plasticity in Mice Is Circuit- and Stimulus-Specific and Requires MECP2.
    Lau BYB; Krishnan K; Huang ZJ; Shea SD
    J Neurosci; 2020 Feb; 40(7):1514-1526. PubMed ID: 31911459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Layer-specific involvement of endocannabinoid signaling in muscarinic-induced long-term depression in layer 2/3 pyramidal neurons of rat visual cortex.
    Joo K; Cho KH; Youn SH; Jang HJ; Rhie DJ
    Brain Res; 2019 Jun; 1712():124-131. PubMed ID: 30753818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of synaptic NR2B-containing NMDA receptors in long-term depression induction in the young rat visual cortex in vitro.
    Li YH; Wang J; Zhang G
    Chin J Physiol; 2011 Jun; 54(3):190-5. PubMed ID: 21789901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.