These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32726707)

  • 21. Identification and characterization of the first ovothiol biosynthetic enzyme.
    Braunshausen A; Seebeck FP
    J Am Chem Soc; 2011 Feb; 133(6):1757-9. PubMed ID: 21247153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. tRNA-dependent amide bond-forming enzymes in peptide natural product biosynthesis.
    Maruyama C; Hamano Y
    Curr Opin Chem Biol; 2020 Dec; 59():164-171. PubMed ID: 32898755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme.
    Faponle AS; Seebeck FP; de Visser SP
    J Am Chem Soc; 2017 Jul; 139(27):9259-9270. PubMed ID: 28602090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ergothioneine, Ovothiol A, and Selenoneine-Histidine-Derived, Biologically Significant, Trace Global Alkaloids.
    Cordell GA; Lamahewage SNS
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential.
    Castellano I; Seebeck FP
    Nat Prod Rep; 2018 Dec; 35(12):1241-1250. PubMed ID: 30052250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substrate specificity of an oxygen dependent sulfoxide synthase in ovothiol biosynthesis.
    Mashabela GT; Seebeck FP
    Chem Commun (Camb); 2013 Sep; 49(70):7714-6. PubMed ID: 23877651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal Structure of the Ergothioneine Sulfoxide Synthase from
    Naowarojna N; Irani S; Hu W; Cheng R; Zhang L; Li X; Chen J; Zhang YJ; Liu P
    ACS Catal; 2019 Aug; 9(8):6955-6961. PubMed ID: 32257583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.
    Liao C; Seebeck FP
    Chembiochem; 2017 Nov; 18(21):2115-2118. PubMed ID: 28862368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-step Replacement of an Unreactive C-H Bond by a C-S Bond Using Polysulfide as the Direct Sulfur Source in Anaerobic Ergothioneine Biosynthesis.
    Cheng R; Wu L; Lai R; Peng C; Naowarojna N; Hu W; Li X; Whelan SA; Lee N; Lopez J; Zhao C; Yong Y; Xue J; Jiang X; Grinstaff MW; Deng Z; Chen J; Cui Q; Zhou J; Liu P
    ACS Catal; 2020 Aug; 10(16):8981-8994. PubMed ID: 34306804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural basis of ergothioneine biosynthesis.
    Stampfli AR; Blankenfeldt W; Seebeck FP
    Curr Opin Struct Biol; 2020 Dec; 65():1-8. PubMed ID: 32408082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Participation of an intermediate sulfoxide in the enzymatic thiolation of the imidazole ring of hercynine to form ergothioneine.
    Ishikawa Y; Israel SE; Melville DB
    J Biol Chem; 1974 Jul; 249(14):4420-7. PubMed ID: 4276459
    [No Abstract]   [Full Text] [Related]  

  • 32. Biosynthesis of ergothioneine by Claviceps purpurea. II. Incorporation of [35S]methionine and the non-utilization of [2(ring)-14C]histamine.
    WILDY J; HEATH H
    Biochem J; 1957 Feb; 65(2):220-2. PubMed ID: 13403896
    [No Abstract]   [Full Text] [Related]  

  • 33. The biosynthesis of ergothioneine and histidine by Claviceps purpurea. I. The incorporation of [2-14C]acetate.
    HEATH H; WILDY J
    Biochem J; 1956 Dec; 64(4):612-20. PubMed ID: 13382810
    [No Abstract]   [Full Text] [Related]  

  • 34. The current status of biotechnological production and the application of a novel antioxidant ergothioneine.
    Han Y; Tang X; Zhang Y; Hu X; Ren LJ
    Crit Rev Biotechnol; 2021 Jun; 41(4):580-593. PubMed ID: 33550854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and Mechanistic Basis for Anaerobic Ergothioneine Biosynthesis.
    Leisinger F; Burn R; Meury M; Lukat P; Seebeck FP
    J Am Chem Soc; 2019 May; 141(17):6906-6914. PubMed ID: 30943021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases.
    Borgman P; Lopez RD; Lane AL
    Org Biomol Chem; 2019 Feb; 17(9):2305-2314. PubMed ID: 30688950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclization mechanism catalyzed by an ATP-grasp enzyme essential for d-cycloserine biosynthesis.
    Matoba Y; Uda N; Kudo M; Sugiyama M
    FEBS J; 2020 Jul; 287(13):2763-2778. PubMed ID: 31793174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems.
    Lin CI; McCarty RM; Liu HW
    Angew Chem Int Ed Engl; 2017 Mar; 56(13):3446-3489. PubMed ID: 27505692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Recent progress in ergothioneine biosynthesis: a review].
    Liu Q; Mao Y; Liao X; Luo J; Ma H; Jiang W
    Sheng Wu Gong Cheng Xue Bao; 2022 Apr; 38(4):1408-1420. PubMed ID: 35470615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unveiling Biosynthesis of the Phytohormone Abscisic Acid in Fungi: Unprecedented Mechanism of Core Scaffold Formation Catalyzed by an Unusual Sesquiterpene Synthase.
    Takino J; Kozaki T; Sato Y; Liu C; Ozaki T; Minami A; Oikawa H
    J Am Chem Soc; 2018 Oct; 140(39):12392-12395. PubMed ID: 30226766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.