These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32726754)

  • 41. Relative fracture toughness and hardness of new dental ceramics.
    Seghi RR; Denry IL; Rosenstiel SF
    J Prosthet Dent; 1995 Aug; 74(2):145-50. PubMed ID: 8537920
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An ultrafast time-resolution method based on picosecond pulsed laser for determining rock fracture toughness at multipoint during the crack propagation.
    Zhang M; Li D; Yang L; Chen L; Shen M; Huo J; Li Y
    Sci Rep; 2022 Mar; 12(1):4550. PubMed ID: 35296715
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications.
    Hua N; Huang L; Chen W; He W; Zhang T
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():400-10. PubMed ID: 25280721
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fracture toughness of the stomatopod dactyl club is enhanced by plastic dissipation: A fracture micromechanics study.
    Chua JQI; Srinivasan DV; Idapalapati S; Miserez A
    Acta Biomater; 2021 May; 126():339-349. PubMed ID: 33727196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass.
    Pan J; Ivanov YP; Zhou WH; Li Y; Greer AL
    Nature; 2020 Feb; 578(7796):559-562. PubMed ID: 32103194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generalized Mohr-Coulomb strain criterion for bulk metallic glasses under complex compressive loading.
    Yu L; Wang TC
    Sci Rep; 2019 Aug; 9(1):12554. PubMed ID: 31467352
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.
    Peitl O; Zanotto ED; Serbena FC; Hench LL
    Acta Biomater; 2012 Jan; 8(1):321-32. PubMed ID: 22032913
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
    Wang G; Zhang S; Bian C; Kong H
    J Mech Behav Biomed Mater; 2014 Nov; 39():119-28. PubMed ID: 25123435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resistance to crack growth in human cortical bone is greater in shear than in tension.
    Norman TL; Nivargikar SV; Burr DB
    J Biomech; 1996 Aug; 29(8):1023-31. PubMed ID: 8817369
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ductile Zr-Based Bulk Metallic Glasses by Controlling Heterogeneous Microstructure from Phase Competition Strategy.
    Cheng JL; Wang JJ; Rui JX; Yun YL; Zhao W; Li F
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31817045
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ductile crystalline-amorphous nanolaminates.
    Wang Y; Li J; Hamza AV; Barbee TW
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11155-60. PubMed ID: 17592136
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Elastic-plastic fracture toughness and rising JR-curve behavior of cortical bone is partially protected from irradiation-sterilization-induced degradation by ribose protectant.
    Woodside M; Willett TL
    J Mech Behav Biomed Mater; 2016 Dec; 64():53-64. PubMed ID: 27479894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues.
    Kruzic JJ; Kim DK; Koester KJ; Ritchie RO
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):384-95. PubMed ID: 19627845
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fracture Performance Study of Carbon-Fiber-Reinforced Resin Matrix Composite Winding Layers under UV Aging Effect.
    Liu Z; Zhou F; Zou C; Zhao J
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Work-hardening induced tensile ductility of bulk metallic glasses via high-pressure torsion.
    Joo SH; Pi DH; Setyawan AD; Kato H; Janecek M; Kim YC; Lee S; Kim HS
    Sci Rep; 2015 Apr; 5():9660. PubMed ID: 25905686
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transformation-mediated ductility in CuZr-based bulk metallic glasses.
    Pauly S; Gorantla S; Wang G; Kühn U; Eckert J
    Nat Mater; 2010 Jun; 9(6):473-7. PubMed ID: 20473286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rate dependent of strength in metallic glasses at different temperatures.
    Wang YW; Bian XL; Wu SW; Hussain I; Jia YD; Yi J; Wang G
    Sci Rep; 2016 Jun; 6():27747. PubMed ID: 27270688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Study on Intrinsic Influence Law of Specimen Size and Loading Speed on Charpy Impact Test.
    Jia W; Pi A; Zhao Z; Wang S; Wei C; Jie Z; Huang F
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683153
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pronounced Plasticity Caused by Phase Separation and β-relaxation Synergistically in Zr-Cu-Al-Mo Bulk Metallic Glasses.
    Wang T; Wang L; Wang Q; Liu Y; Hui X
    Sci Rep; 2017 Apr; 7(1):1238. PubMed ID: 28450711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Laser Shock Peening on Zr-based Bulk Metallic Glass and Its Effect on Plasticity: Experiment and Modeling.
    Cao Y; Xie X; Antonaglia J; Winiarski B; Wang G; Shin YC; Withers PJ; Dahmen KA; Liaw PK
    Sci Rep; 2015 May; 5():10789. PubMed ID: 25991412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.