These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 32726760)
1. Feasibility study of range verification based on proton-induced acoustic signals and recurrent neural network. Yao S; Hu Z; Zhang X; Lou E; Liang Z; Wang Y; Peng H Phys Med Biol; 2020 Nov; 65(21):215017. PubMed ID: 32726760 [TBL] [Abstract][Full Text] [Related]
2. Further investigation of 3D dose verification in proton therapy utilizing acoustic signal, wavelet decomposition and machine learning. Yao S; Hu Z; Xie Q; Yang Y; Peng H Biomed Phys Eng Express; 2021 Nov; 8(1):. PubMed ID: 34768245 [TBL] [Abstract][Full Text] [Related]
3. Feasibility study of 3D time-reversal reconstruction of proton-induced acoustic signals for dose verification in the head and the liver: A simulation study. Yu Y; Qi P; Peng H Med Phys; 2021 Aug; 48(8):4485-4497. PubMed ID: 34120348 [TBL] [Abstract][Full Text] [Related]
4. Feasibility study of patient-specific dose verification in proton therapy utilizing positron emission tomography (PET) and generative adversarial network (GAN). Ma S; Hu Z; Ye K; Zhang X; Wang Y; Peng H Med Phys; 2020 Oct; 47(10):5194-5208. PubMed ID: 32772377 [TBL] [Abstract][Full Text] [Related]
5. A machine learning framework with anatomical prior for online dose verification using positron emitters and PET in proton therapy. Hu Z; Li G; Zhang X; Ye K; Lu J; Peng H Phys Med Biol; 2020 Sep; 65(18):185003. PubMed ID: 32460246 [TBL] [Abstract][Full Text] [Related]
6. Simulation studies of time reversal-based protoacoustic reconstruction for range and dose verification in proton therapy. Yu Y; Li Z; Zhang D; Xing L; Peng H Med Phys; 2019 Aug; 46(8):3649-3662. PubMed ID: 31199511 [TBL] [Abstract][Full Text] [Related]
7. Acoustic-based proton range verification in heterogeneous tissue: simulation studies. Jones KC; Nie W; Chu JCH; Turian JV; Kassaee A; Sehgal CM; Avery S Phys Med Biol; 2018 Jan; 63(2):025018. PubMed ID: 29176057 [TBL] [Abstract][Full Text] [Related]
8. Technical Note: Machine learning approaches for range and dose verification in proton therapy using proton-induced positron emitters. Li Z; Wang Y; Yu Y; Fan K; Xing L; Peng H Med Phys; 2019 Dec; 46(12):5748-5757. PubMed ID: 31529506 [TBL] [Abstract][Full Text] [Related]
9. Theoretical detection threshold of the proton-acoustic range verification technique. Ahmad M; Xiang L; Yousefi S; Xing L Med Phys; 2015 Oct; 42(10):5735-44. PubMed ID: 26429247 [TBL] [Abstract][Full Text] [Related]
10. Range and dose verification in proton therapy using proton-induced positron emitters and recurrent neural networks (RNNs). Liu C; Li Z; Hu W; Xing L; Peng H Phys Med Biol; 2019 Sep; 64(17):175009. PubMed ID: 31342940 [TBL] [Abstract][Full Text] [Related]
11. Two-stage ionoacoustic range verification leveraging Monte Carlo and acoustic simulations to stably account for tissue inhomogeneity and accelerator-specific time structure - A simulation study. Patch SK; Hoff DEM; Webb TB; Sobotka LG; Zhao T Med Phys; 2018 Feb; 45(2):783-793. PubMed ID: 29159885 [TBL] [Abstract][Full Text] [Related]
12. Feasibility of RACT for 3D dose measurement and range verification in a water phantom. Alsanea F; Moskvin V; Stantz KM Med Phys; 2015 Feb; 42(2):937-46. PubMed ID: 25652506 [TBL] [Abstract][Full Text] [Related]
13. Proton beam characterization by proton-induced acoustic emission: simulation studies. Jones KC; Witztum A; Sehgal CM; Avery S Phys Med Biol; 2014 Nov; 59(21):6549-63. PubMed ID: 25322212 [TBL] [Abstract][Full Text] [Related]
14. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy. Assmann W; Kellnberger S; Reinhardt S; Lehrack S; Edlich A; Thirolf PG; Moser M; Dollinger G; Omar M; Ntziachristos V; Parodi K Med Phys; 2015 Feb; 42(2):567-74. PubMed ID: 25652477 [TBL] [Abstract][Full Text] [Related]
15. Proton spot dose estimation based on positron activity distributions with neural network. Zhang R; Mu D; Ma Q; Wan L; Xiao P; Qi P; Liu G; Zhang S; Yang K; Yang Z; Xie Q Med Phys; 2024 Oct; 51(10):7226-7239. PubMed ID: 38984805 [TBL] [Abstract][Full Text] [Related]
16. A comparison study between single- and dual-energy CT density extraction methods for neurological proton monte carlo treatment planning. van der Heyden B; Almeida IP; Vilches-Freixas G; Van Beveren C; Vaniqui A; Ares C; Terhaag K; Fonseca GP; Eekers DBP; Verhaegen F Acta Oncol; 2020 Feb; 59(2):171-179. PubMed ID: 31646923 [TBL] [Abstract][Full Text] [Related]
17. 3D Jiang Z; Sun L; Yao W; Wu QJ; Xiang L; Ren L Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36206745 [TBL] [Abstract][Full Text] [Related]
18. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification. Polf JC; Avery S; Mackin DS; Beddar S Phys Med Biol; 2015 Sep; 60(18):7085-99. PubMed ID: 26317610 [TBL] [Abstract][Full Text] [Related]
19. Proton range verification in homogeneous materials through acoustic measurements. Nie W; Jones KC; Petro S; Kassaee A; Sehgal CM; Avery S Phys Med Biol; 2018 Jan; 63(2):025036. PubMed ID: 29160776 [TBL] [Abstract][Full Text] [Related]
20. Independent dose verification system with Monte Carlo simulations using TOPAS for passive scattering proton therapy at the National Cancer Center in Korea. Shin WG; Testa M; Kim HS; Jeong JH; Lee SB; Kim YJ; Min CH Phys Med Biol; 2017 Sep; 62(19):7598-7616. PubMed ID: 28809759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]