These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 32726902)
1. Optimization of AIN Composite Structure Based Surface Acoustic Wave Device for Potential Sensing at Extremely High Temperature. Fan S; Wang W; Li X; Jia Y; Sun Y; Liu M Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32726902 [TBL] [Abstract][Full Text] [Related]
2. Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature. Li X; Wang W; Fan S; Yin Y; Jia Y; Liang Y; Liu M Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344818 [TBL] [Abstract][Full Text] [Related]
3. FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO₂/Si Multilayer Structure. Aslam MZ; Jeoti V; Karuppanan S; Malik AF; Iqbal A Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29882929 [TBL] [Abstract][Full Text] [Related]
4. The Extraction of Coupling-of-Modes Parameters in a Layered Piezoelectric Substrate and Its Application to a Double-Mode SAW Filter. Li L; Zhang Q; Yang Y; Li B; Tian Y; Zhao X; Fu S Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138374 [TBL] [Abstract][Full Text] [Related]
5. Modulating the Performance of the SAW Strain Sensor Based on Dual-Port Resonator Using FEM Simulation. Cheng C; Lu Z; Yang J; Gong X; Ke Q Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110107 [TBL] [Abstract][Full Text] [Related]
6. Design and Characterization of Surface Acoustic Wave-Based Wireless and Passive Temperature Sensing System. Zhou Z; Wang H; Lou L Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675355 [TBL] [Abstract][Full Text] [Related]
7. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration. Hao W; Liu J; Liu M; Liang Y; He S Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27104540 [TBL] [Abstract][Full Text] [Related]
8. Modeling for High-Frequency Spurious Responses in Incredible High-Performance Surface Acoustic Wave Devices. Jiang G; Shuai Y; Wei Z; Yao J; Luo W; Pan X; Wu C; Zhang W Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258253 [TBL] [Abstract][Full Text] [Related]
10. The Characterization of Surface Acoustic Wave Devices Based on AlN-Metal Structures. Shu L; Peng B; Li C; Gong D; Yang Z; Liu X; Zhang W Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27077864 [TBL] [Abstract][Full Text] [Related]
11. Mode Analysis of Pt/LGS Surface Acoustic Wave Devices. Xu H; Jin H; Dong S; Song X; Chen J; Xuan W; Huang S; Shi L; Luo J Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322434 [TBL] [Abstract][Full Text] [Related]
12. Fabrications of L-band LiNbO Hu B; Zhang S; Zhang H; Lv W; Zhang C; Lv X; San H Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31141949 [TBL] [Abstract][Full Text] [Related]
13. Rational Design of a Surface Acoustic Wave Device for Wearable Body Temperature Monitoring. Xie Y; Deng M; Chen J; Duan Y; Zhang J; Mu D; Dong S; Luo J; Jin H; Kakio S Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793128 [TBL] [Abstract][Full Text] [Related]
14. Investigation of Surface Acoustic Wave Propagation Characteristics in New Multilayer Structure: SiO Zhang H; Wang H Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832698 [TBL] [Abstract][Full Text] [Related]
15. High-Frequency Surface Acoustic Wave Resonator with Diamond/AlN/IDT/AlN/Diamond Multilayer Structure. Lei L; Dong B; Hu Y; Lei Y; Wang Z; Ruan S Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080938 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Performance of ZnO/SiO Su R; Fu S; Shen J; Chen Z; Lu Z; Yang M; Wang R; Zeng F; Wang W; Song C; Pan F ACS Appl Mater Interfaces; 2020 Sep; 12(37):42378-42385. PubMed ID: 32830495 [TBL] [Abstract][Full Text] [Related]
17. Investigation on Quasi-Lamb Wave Modes in AlN-on-Si MEMS Resonators. Tu C; Qiao L; Li L; Chen Y; Zhang X IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Oct; 70(10):1252-1260. PubMed ID: 37028377 [TBL] [Abstract][Full Text] [Related]
18. FEM Modeling of the Temperature Influence on the Performance of SAW Sensors Operating at GigaHertz Frequency Range and at High Temperature Up to 500 °C. Asseko Ondo JC; Blampain EJJ; N'Tchayi Mbourou G; Mc Murtry S; Hage-Ali S; Elmazria O Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32726976 [TBL] [Abstract][Full Text] [Related]
19. A Three-Dimensional Finite Element Analysis Model of SAW Torque Sensor with Multilayer Structure. Li Z; Meng X; Wang B; Zhang C Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408215 [TBL] [Abstract][Full Text] [Related]
20. FEM simulation of Rayleigh waves for CMOS compatible SAW devices based on AlN/SiO₂/Si(100). Kaletta UC; Wenger C Ultrasonics; 2014 Jan; 54(1):291-5. PubMed ID: 23684473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]