These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 327270)
21. Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. Ciriacy M Mol Gen Genet; 1976 Jun; 145(3):327-33. PubMed ID: 781520 [TBL] [Abstract][Full Text] [Related]
22. Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae. To-E A; Ueda Y; Kakimoto SI; Oshima Y J Bacteriol; 1973 Feb; 113(2):727-38. PubMed ID: 4570606 [TBL] [Abstract][Full Text] [Related]
23. Isolation and characterization of further cis- and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. Ciriacy M Mol Gen Genet; 1979 Nov; 176(3):427-31. PubMed ID: 392242 [TBL] [Abstract][Full Text] [Related]
24. Dilution kinetic studies of yeast populations: in vivo aggregation of galactose utilizing enzymes and positive regulator molecules. Tsuyumu S; Adams BG Genetics; 1974 Jul; 77(3):491-505. PubMed ID: 4369925 [TBL] [Abstract][Full Text] [Related]
25. Regulation of the galactose pathway in Saccharomyces cerevisiae: induction of uridyl transferase mRNA and dependency on GAL4 gene function. Hopper JE; Broach JR; Rowe LB Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2878-82. PubMed ID: 351620 [TBL] [Abstract][Full Text] [Related]
26. Identification of the genetic locus for the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae. Kaneko Y; Toh-e A; Oshima Y Mol Cell Biol; 1982 Feb; 2(2):127-37. PubMed ID: 7050668 [TBL] [Abstract][Full Text] [Related]
27. Isolation and characterization of a pleiotropic glucose repression resistant mutant of Saccharomyces cerevisiae. Bailey RB; Woodword A Mol Gen Genet; 1984; 193(3):507-12. PubMed ID: 6323921 [TBL] [Abstract][Full Text] [Related]
28. The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae. Ostergaard S; Walløe KO; Gomes SG; Olsson L; Nielsen J FEMS Yeast Res; 2001 Apr; 1(1):47-55. PubMed ID: 12702462 [TBL] [Abstract][Full Text] [Related]
29. Replacement of a conserved tyrosine by tryptophan in Gal3p of Saccharomyces cerevisiae reduces constitutive activity: implications for signal transduction in the GAL regulon. Lakshminarasimhan A; Bhat PJ Mol Genet Genomics; 2005 Nov; 274(4):384-93. PubMed ID: 16160853 [TBL] [Abstract][Full Text] [Related]
30. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870 [TBL] [Abstract][Full Text] [Related]
31. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae. Tani T; Taguchi H; Fujimori KE; Sahara T; Ohgiya S; Kamagata Y; Akamatsu T J Biosci Bioeng; 2016 Oct; 122(4):446-55. PubMed ID: 27067371 [TBL] [Abstract][Full Text] [Related]
32. Evidence for positive regulation of the proline utilization pathway in Saccharomyces cerevisiae. Brandriss MC Genetics; 1987 Nov; 117(3):429-35. PubMed ID: 3121434 [TBL] [Abstract][Full Text] [Related]
33. Molecular characterization of MRG19 of Saccharomyces cerevisiae. Implication in the regulation of galactose and nonfermentable carbon source utilization. Khanday FA; Saha M; Bhat PJ Eur J Biochem; 2002 Dec; 269(23):5840-50. PubMed ID: 12444972 [TBL] [Abstract][Full Text] [Related]
34. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Bro C; Knudsen S; Regenberg B; Olsson L; Nielsen J Appl Environ Microbiol; 2005 Nov; 71(11):6465-72. PubMed ID: 16269670 [TBL] [Abstract][Full Text] [Related]
35. Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae. Vissers S; Andre B; Muyldermans F; Grenson M Eur J Biochem; 1989 May; 181(2):357-61. PubMed ID: 2653828 [TBL] [Abstract][Full Text] [Related]
36. Isolation and characterization of recessive, constitutive mutations for repressible acid phosphatase synthesis in Saccharomyces cerevisiae. Ueda Y; To-E A; Oshima Y J Bacteriol; 1975 Jun; 122(3):911-22. PubMed ID: 1097406 [TBL] [Abstract][Full Text] [Related]
37. Gal80 dimerization and the yeast GAL gene switch. Pilauri V; Bewley M; Diep C; Hopper J Genetics; 2005 Apr; 169(4):1903-14. PubMed ID: 15695361 [TBL] [Abstract][Full Text] [Related]
38. The yeast IMP1 gene is allelic to GAL2. Ulery TL; Mangus DA; Jaehning JA Mol Gen Genet; 1991 Nov; 230(1-2):129-35. PubMed ID: 1745225 [TBL] [Abstract][Full Text] [Related]
39. Genetic studies with a phosphoglucose isomerase mutant of Saccharomyces cerevisiae. Maitra PK; Lobo Z Mol Gen Genet; 1977 Nov; 156(1):55-60. PubMed ID: 340892 [TBL] [Abstract][Full Text] [Related]
40. A gene controlling the synthesis of non specific alkaline phosphatase in Saccharomyces cerevisiae. Toh-E A; Nakamura H; Oshima Y Biochim Biophys Acta; 1976 Mar; 428(1):182-92. PubMed ID: 769832 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]