These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32727099)

  • 1. An In Vitro Lung System to Assess the Proinflammatory Hazard of Carbon Nanotube Aerosols.
    Barosova H; Karakocak BB; Septiadi D; Petri-Fink A; Stone V; Rothen-Rutishauser B
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32727099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of EpiAlveolar Lung Model to Predict Fibrotic Potential of Multiwalled Carbon Nanotubes.
    Barosova H; Maione AG; Septiadi D; Sharma M; Haeni L; Balog S; O'Connell O; Jackson GR; Brown D; Clippinger AJ; Hayden P; Petri-Fink A; Stone V; Rothen-Rutishauser B
    ACS Nano; 2020 Apr; 14(4):3941-3956. PubMed ID: 32167743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model.
    Chortarea S; Clift MJ; Vanhecke D; Endes C; Wick P; Petri-Fink A; Rothen-Rutishauser B
    Nanotoxicology; 2015; 9(8):983-93. PubMed ID: 25697181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT.
    Di Ianni E; Erdem JS; Møller P; Sahlgren NM; Poulsen SS; Knudsen KB; Zienolddiny S; Saber AT; Wallin H; Vogel U; Jacobsen NR
    Part Fibre Toxicol; 2021 Jul; 18(1):25. PubMed ID: 34301283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leveraging proteomics to compare submerged versus air-liquid interface carbon nanotube exposure to a 3D lung cell model.
    Hilton G; Barosova H; Petri-Fink A; Rothen-Rutishauser B; Bereman M
    Toxicol In Vitro; 2019 Feb; 54():58-66. PubMed ID: 30243732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials.
    Sanchez VC; Weston P; Yan A; Hurt RH; Kane AB
    Part Fibre Toxicol; 2011 May; 8():17. PubMed ID: 21592387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury.
    Hussain S; Ji Z; Taylor AJ; DeGraff LM; George M; Tucker CJ; Chang CH; Li R; Bonner JC; Garantziotis S
    ACS Nano; 2016 Aug; 10(8):7675-88. PubMed ID: 27459049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.
    Loret T; Peyret E; Dubreuil M; Aguerre-Chariol O; Bressot C; le Bihan O; Amodeo T; Trouiller B; Braun A; Egles C; Lacroix G
    Part Fibre Toxicol; 2016 Nov; 13(1):58. PubMed ID: 27919268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier.
    Costa A; de Souza Carvalho-Wodarz C; Seabra V; Sarmento B; Lehr CM
    Acta Biomater; 2019 Jun; 91():235-247. PubMed ID: 31004840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additional histopathologic examination of the lungs from a 3-month inhalation toxicity study with multiwall carbon nanotubes in rats.
    Treumann S; Ma-Hock L; Gröters S; Landsiedel R; van Ravenzwaay B
    Toxicol Sci; 2013 Jul; 134(1):103-10. PubMed ID: 23570993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar-endothelial co-cultures.
    Cao Y; Roursgaard M; Jacobsen NR; Møller P; Loft S
    Nanotoxicology; 2016; 10(2):235-44. PubMed ID: 26067756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evaluation of cytotoxicity and oxidative stress induced by multiwalled carbon nanotubes in murine RAW 264.7 macrophages and human A549 lung cells.
    Chen B; Liu Y; Song WM; Hayashi Y; Ding XC; Li WH
    Biomed Environ Sci; 2011 Dec; 24(6):593-601. PubMed ID: 22365394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stromelysin-2 (MMP-10) facilitates clearance and moderates inflammation and cell death following lung exposure to long multiwalled carbon nanotubes.
    Vandivort TC; Birkland TP; Domiciano TP; Mitra S; Kavanagh TJ; Parks WC
    Int J Nanomedicine; 2017; 12():1019-1031. PubMed ID: 28223796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.
    Polk WW; Sharma M; Sayes CM; Hotchkiss JA; Clippinger AJ
    Part Fibre Toxicol; 2016 Apr; 13():20. PubMed ID: 27108236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Asthmatic Bronchial Cells Are More Susceptible to Subchronic Repeated Exposures of Aerosolized Carbon Nanotubes At Occupationally Relevant Doses Than Healthy Cells.
    Chortarea S; Barosova H; Clift MJD; Wick P; Petri-Fink A; Rothen-Rutishauser B
    ACS Nano; 2017 Aug; 11(8):7615-7625. PubMed ID: 28505409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems.
    Ding Y; Weindl P; Lenz AG; Mayer P; Krebs T; Schmid O
    Part Fibre Toxicol; 2020 Sep; 17(1):44. PubMed ID: 32938469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials.
    Clippinger AJ; Ahluwalia A; Allen D; Bonner JC; Casey W; Castranova V; David RM; Halappanavar S; Hotchkiss JA; Jarabek AM; Maier M; Polk W; Rothen-Rutishauser B; Sayes CM; Sayre P; Sharma M; Stone V
    Arch Toxicol; 2016 Jul; 90(7):1769-83. PubMed ID: 27121469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxicity, cytokine release and ER stress-autophagy gene expression in endothelial cells and alveolar-endothelial co-culture exposed to pristine and carboxylated multi-walled carbon nanotubes.
    Chang S; Zhao X; Li S; Liao T; Long J; Yu Z; Cao Y
    Ecotoxicol Environ Saf; 2018 Oct; 161():569-577. PubMed ID: 29929133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations.
    Kabadi PK; Rodd AL; Simmons AE; Messier NJ; Hurt RH; Kane AB
    Part Fibre Toxicol; 2019 Apr; 16(1):15. PubMed ID: 30943996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic layer deposition coating of carbon nanotubes with zinc oxide causes acute phase immune responses in human monocytes in vitro and in mice after pulmonary exposure.
    Dandley EC; Taylor AJ; Duke KS; Ihrie MD; Shipkowski KA; Parsons GN; Bonner JC
    Part Fibre Toxicol; 2016 Jun; 13(1):29. PubMed ID: 27278808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.