BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32727735)

  • 21. Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators.
    Wang Y; Kaiser CE; Frett B; Li HY
    J Med Chem; 2013 Jul; 56(13):5219-30. PubMed ID: 23566315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Functional Proximal Proteome of Oncogenic Ras Includes mTORC2.
    Kovalski JR; Bhaduri A; Zehnder AM; Neela PH; Che Y; Wozniak GG; Khavari PA
    Mol Cell; 2019 Feb; 73(4):830-844.e12. PubMed ID: 30639242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nras and Kras mutation in Japanese lung cancer patients: Genotyping analysis using LightCycler.
    Sasaki H; Okuda K; Kawano O; Endo K; Yukiue H; Yokoyama T; Yano M; Fujii Y
    Oncol Rep; 2007 Sep; 18(3):623-8. PubMed ID: 17671710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the interactions of the RAS family in the human protein network and their potential implications in RAS-directed therapies.
    Bueno A; Morilla I; Diez D; Moya-Garcia AA; Lozano J; Ranea JA
    Oncotarget; 2016 Nov; 7(46):75810-75826. PubMed ID: 27713118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lung-cancer chemoprevention by induction of synthetic lethality in mutant KRAS premalignant cells in vitro and in vivo.
    Huang S; Ren X; Wang L; Zhang L; Wu X
    Cancer Prev Res (Phila); 2011 May; 4(5):666-73. PubMed ID: 21543344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ras functional proximity proteomics establishes mTORC2 as new direct ras effector.
    Kovalski JR; Shanderson RL; Khavari PA
    Oncotarget; 2019 Aug; 10(50):5126-5135. PubMed ID: 31497244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ras effector mutant expression suggest a negative regulator inhibits lung tumor formation.
    Vandal G; Geiling B; Dankort D
    PLoS One; 2014; 9(1):e84745. PubMed ID: 24489653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras.
    Wang T; Yu H; Hughes NW; Liu B; Kendirli A; Klein K; Chen WW; Lander ES; Sabatini DM
    Cell; 2017 Feb; 168(5):890-903.e15. PubMed ID: 28162770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blockade of mutant RAS oncogenic signaling with a special emphasis on KRAS.
    Roskoski R
    Pharmacol Res; 2021 Oct; 172():105806. PubMed ID: 34450320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RAF suppression synergizes with MEK inhibition in KRAS mutant cancer cells.
    Lamba S; Russo M; Sun C; Lazzari L; Cancelliere C; Grernrum W; Lieftink C; Bernards R; Di Nicolantonio F; Bardelli A
    Cell Rep; 2014 Sep; 8(5):1475-83. PubMed ID: 25199829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The potential of targeting Ras proteins in lung cancer.
    McCormick F
    Expert Opin Ther Targets; 2015 Apr; 19(4):451-4. PubMed ID: 25558943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergy of WEE1 and mTOR Inhibition in Mutant
    Hai J; Liu S; Bufe L; Do K; Chen T; Wang X; Ng C; Li S; Tsao MS; Shapiro GI; Wong KK
    Clin Cancer Res; 2017 Nov; 23(22):6993-7005. PubMed ID: 28821559
    [No Abstract]   [Full Text] [Related]  

  • 33. RAS GTPase signalling to alternative effector pathways.
    Singh S; Smith MJ
    Biochem Soc Trans; 2020 Oct; 48(5):2241-2252. PubMed ID: 33125484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A RAS renaissance: emerging targeted therapies for KRAS-mutated non-small cell lung cancer.
    Vasan N; Boyer JL; Herbst RS
    Clin Cancer Res; 2014 Aug; 20(15):3921-30. PubMed ID: 24893629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer.
    Hutton JE; Wang X; Zimmerman LJ; Slebos RJ; Trenary IA; Young JD; Li M; Liebler DC
    Mol Cell Proteomics; 2016 Sep; 15(9):2924-38. PubMed ID: 27340238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oncogenic KRAS-induced epiregulin overexpression contributes to aggressive phenotype and is a promising therapeutic target in non-small-cell lung cancer.
    Sunaga N; Kaira K; Imai H; Shimizu K; Nakano T; Shames DS; Girard L; Soh J; Sato M; Iwasaki Y; Ishizuka T; Gazdar AF; Minna JD; Mori M
    Oncogene; 2013 Aug; 32(34):4034-42. PubMed ID: 22964644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defeat mutant KRAS with synthetic lethality.
    Pang X; Liu M
    Small GTPases; 2017 Oct; 8(4):212-219. PubMed ID: 27463838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer.
    Kim J; McMillan E; Kim HS; Venkateswaran N; Makkar G; Rodriguez-Canales J; Villalobos P; Neggers JE; Mendiratta S; Wei S; Landesman Y; Senapedis W; Baloglu E; Chow CB; Frink RE; Gao B; Roth M; Minna JD; Daelemans D; Wistuba II; Posner BA; Scaglioni PP; White MA
    Nature; 2016 Oct; 538(7623):114-117. PubMed ID: 27680702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS.
    Zhang XH; Cheng Y; Shin JY; Kim JO; Oh JE; Kang JH
    Cancer Biol Ther; 2013 Jul; 14(7):597-605. PubMed ID: 23792647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas.
    McCleland ML; Adler AS; Deming L; Cosino E; Lee L; Blackwood EM; Solon M; Tao J; Li L; Shames D; Jackson E; Forrest WF; Firestein R
    Clin Cancer Res; 2013 Feb; 19(4):773-84. PubMed ID: 23224736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.