BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 32727912)

  • 1. OXR2 Increases Plant Defense against a Hemibiotrophic Pathogen via the Salicylic Acid Pathway.
    Mencia R; Céccoli G; Fabro G; Torti P; Colombatti F; Ludwig-Müller J; Alvarez ME; Welchen E
    Plant Physiol; 2020 Oct; 184(2):1112-1127. PubMed ID: 32727912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-3-oxo-octanoyl-homoserine lactone-mediated priming of resistance to Pseudomonas syringae requires the salicylic acid signaling pathway in Arabidopsis thaliana.
    Liu F; Zhao Q; Jia Z; Song C; Huang Y; Ma H; Song S
    BMC Plant Biol; 2020 Jan; 20(1):38. PubMed ID: 31992205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1.
    Kojima H; Hossain MM; Kubota M; Hyakumachi M
    J Oleo Sci; 2013; 62(6):415-26. PubMed ID: 23728333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae.
    Zhang X; Han X; Shi R; Yang G; Qi L; Wang R; Li G
    Plant Physiol Biochem; 2013 Dec; 73():383-91. PubMed ID: 24215930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae.
    Zheng Z; Mosher SL; Fan B; Klessig DF; Chen Z
    BMC Plant Biol; 2007 Jan; 7():2. PubMed ID: 17214894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATG4 Mediated
    Gong W; Li B; Zhang B; Chen W
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708160
    [No Abstract]   [Full Text] [Related]  

  • 7. Diverse mechanisms of resistance to Pseudomonas syringae in a thousand natural accessions of Arabidopsis thaliana.
    Velásquez AC; Oney M; Huot B; Xu S; He SY
    New Phytol; 2017 Jun; 214(4):1673-1687. PubMed ID: 28295393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana.
    Kovacs I; Durner J; Lindermayr C
    New Phytol; 2015 Nov; 208(3):860-72. PubMed ID: 26096525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4.
    Schön M; Töller A; Diezel C; Roth C; Westphal L; Wiermer M; Somssich IE
    Mol Plant Microbe Interact; 2013 Jul; 26(7):758-67. PubMed ID: 23617415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACR11 modulates levels of reactive oxygen species and salicylic acid-associated defense response in Arabidopsis.
    Singh SK; Sung TY; Chung TY; Lin SY; Lin SC; Liao JC; Hsieh WY; Hsieh MH
    Sci Rep; 2018 Aug; 8(1):11851. PubMed ID: 30087396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121.
    An C; Wang C; Mou Z
    New Phytol; 2017 May; 214(3):1245-1259. PubMed ID: 28134437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SA and NHP glucosyltransferase UGT76B1 affects plant defense in both SID2- and NPR1-dependent and independent manner.
    Zhang W; Maksym R; Georgii E; Geist B; Schäffner AR
    Plant Cell Rep; 2024 May; 43(6):149. PubMed ID: 38780624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew.
    Le Henanff G; Farine S; Kieffer-Mazet F; Miclot AS; Heitz T; Mestre P; Bertsch C; Chong J
    Planta; 2011 Aug; 234(2):405-17. PubMed ID: 21505863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses.
    Mutka AM; Fawley S; Tsao T; Kunkel BN
    Plant J; 2013 Jun; 74(5):746-54. PubMed ID: 23521356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis.
    Wang GF; Seabolt S; Hamdoun S; Ng G; Park J; Lu H
    Plant Physiol; 2011 Jul; 156(3):1508-19. PubMed ID: 21543726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis.
    Shi Z; Maximova SN; Liu Y; Verica J; Guiltinan MJ
    BMC Plant Biol; 2010 Nov; 10():248. PubMed ID: 21078185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000.
    Yaeno T; Iba K
    Plant Physiol; 2008 Oct; 148(2):1032-41. PubMed ID: 18753285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response.
    Negi N; Khurana P
    Plant Cell Rep; 2021 Nov; 40(11):2151-2171. PubMed ID: 33997916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen.
    Lee HY; Byeon Y; Tan DX; Reiter RJ; Back K
    J Pineal Res; 2015 Apr; 58(3):291-9. PubMed ID: 25652756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction.
    Zhang Z; Li Q; Li Z; Staswick PE; Wang M; Zhu Y; He Z
    Plant Physiol; 2007 Oct; 145(2):450-64. PubMed ID: 17704230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.