These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 32728231)
1. Characterization of pressure fluctuations within a controlled-diffusion blade boundary layer using the equilibrium wall-modelled LES. Boukharfane R; Parsani M; Bodart J Sci Rep; 2020 Jul; 10(1):12735. PubMed ID: 32728231 [TBL] [Abstract][Full Text] [Related]
2. Active control of airfoil turbulent boundary layer noise with trailing-edge blowing. Yang C; Arcondoulis EJG; Yang Y; Guo J; Maryami R; Bi C; Liu Y J Acoust Soc Am; 2023 Apr; 153(4):2115. PubMed ID: 37092929 [TBL] [Abstract][Full Text] [Related]
3. Numerical investigation of low-noise airfoils inspired by the down coat of owls. Bodling A; Sharma A Bioinspir Biomim; 2018 Dec; 14(1):016013. PubMed ID: 30523914 [TBL] [Abstract][Full Text] [Related]
4. Aeroacoustic characteristics of owl-inspired blade designs in a mixed flow fan: effects of leading- and trailing-edge serrations. Wang J; Ishibashi K; Joto M; Ikeda T; Fujii T; Nakata T; Liu H Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34243175 [TBL] [Abstract][Full Text] [Related]
5. Control of leading-edge separation on bioinspired airfoil with fluttering coverts. Ma X; Gong X; Tang Z; Jiang N Phys Rev E; 2022 Feb; 105(2-2):025107. PubMed ID: 35291149 [TBL] [Abstract][Full Text] [Related]
6. Trailing-edge far-field noise and noise source characterization in high inflow turbulence conditions. Botero-Bolívar L; Dos Santos FL; Venner CH; de Santana LD J Acoust Soc Am; 2024 Feb; 155(2):803-816. PubMed ID: 38299942 [TBL] [Abstract][Full Text] [Related]
7. The PELskin project-part V: towards the control of the flow around aerofoils at high angle of attack using a self-activated deployable flap. Rosti ME; Kamps L; Bruecker C; Omidyeganeh M; Pinelli A Meccanica; 2017; 52(8):1811-1824. PubMed ID: 28529384 [TBL] [Abstract][Full Text] [Related]
8. Dynamic slip wall model for large-eddy simulation. Bae HJ; Lozano-Durán A; Bose ST; Moin P J Fluid Mech; 2019 Jan; 859():400-432. PubMed ID: 31631905 [TBL] [Abstract][Full Text] [Related]
9. An experimental investigation of aerodynamic and aeroacoustic performance of a wind turbine airfoil with trailing edge serrations. Cao H; Zhou T; Zhang Y; Zhang M J Acoust Soc Am; 2022 Feb; 151(2):1211. PubMed ID: 35232091 [TBL] [Abstract][Full Text] [Related]
10. Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction. Chong TP; Dubois E J Acoust Soc Am; 2016 Aug; 140(2):1361. PubMed ID: 27586762 [TBL] [Abstract][Full Text] [Related]
11. Predictions of Conjugate Heat Transfer in Turbulent Channel Flow Using Advanced Wall-Modeled Large Eddy Simulation Techniques. Li Y; Ries F; Nishad K; Sadiki A Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34200494 [TBL] [Abstract][Full Text] [Related]
12. Numerical investigation on the aerodynamic efficiency of bio-inspired corrugated and cambered airfoils in ground effect. Abdizadeh GR; Farokhinejad M; Ghasemloo S Sci Rep; 2022 Nov; 12(1):19117. PubMed ID: 36351992 [TBL] [Abstract][Full Text] [Related]
13. Error scaling of large-eddy simulation in the outer region of wall-bounded turbulence. Lozano-Durán A; Bae HJ J Comput Phys; 2019 Sep; 392():532-555. PubMed ID: 31631902 [TBL] [Abstract][Full Text] [Related]
14. Numerical Simulation of the Transient Flow around the Combined Morphing Leading-Edge and Trailing-Edge Airfoil. Bashir M; Negahban MH; Botez RM; Wong T Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392154 [TBL] [Abstract][Full Text] [Related]
15. Implicit Subgrid-Scale Modeling of a Mach 2.5 Spatially Developing Turbulent Boundary Layer. Araya G; Lagares C Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455218 [TBL] [Abstract][Full Text] [Related]
16. Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation. Park GI; Moin P Phys Rev Fluids; 2016 Jun; 1(2):. PubMed ID: 31633073 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control. Wang C; Tang H Bioinspir Biomim; 2018 May; 13(4):046005. PubMed ID: 29648545 [TBL] [Abstract][Full Text] [Related]
18. Boundary layer transition modeling on leading edge inflatable kite airfoils. Folkersma M; Schmehl R; Viré A Wind Energy (Chichester); 2019 Jul; 22(7):908-921. PubMed ID: 31656395 [TBL] [Abstract][Full Text] [Related]
19. Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations. Zhao M; Cao H; Zhang M; Liao C; Zhou T Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34020442 [TBL] [Abstract][Full Text] [Related]
20. Effect of free-stream turbulence on boundary layer transition. Goldstein ME Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]