These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32728236)

  • 1. Night-time measurements of astronomical seeing at Dome A in Antarctica.
    Ma B; Shang Z; Hu Y; Hu K; Wang Y; Yang X; Ashley MCB; Hickson P; Jiang P
    Nature; 2020 Jul; 583(7818):771-774. PubMed ID: 32728236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exceptional astronomical seeing conditions above Dome C in Antarctica.
    Lawrence JS; Ashley MC; Tokovinin A; Travouillon T
    Nature; 2004 Sep; 431(7006):278-81. PubMed ID: 15372024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model for estimating the astronomical seeing at Dome A, Antarctica.
    Yang Q; Wu X; Han Y; Qing C; Wu S; Su C; Wu P; Zhang S
    Opt Express; 2021 Oct; 29(22):35238-35246. PubMed ID: 34808962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lenghu on the Tibetan Plateau as an astronomical observing site.
    Deng L; Yang F; Chen X; He F; Liu Q; Zhang B; Zhang C; Wang K; Liu N; Ren A; Luo Z; Yan Z; Tian J; Pan J
    Nature; 2021 Aug; 596(7872):353-356. PubMed ID: 34408333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the turbulence profile in the lower atmospheric boundary layer.
    van Iersel M; Paulson DA; Wu C; Ferlic NA; Rzasa JR; Davis CC; Walker M; Bowden M; Spychalsky J; Titus F
    Appl Opt; 2019 Sep; 58(25):6934-6941. PubMed ID: 31503665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoscale optical turbulence simulations above Tibetan Plateau: first attempt.
    Qing C; Wu X; Li X; Luo T; Su C; Zhu W
    Opt Express; 2020 Feb; 28(4):4571-4586. PubMed ID: 32121691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of behavior of optical turbulence during summer in the surface layer above the Antarctic Plateau using the Polar WRF model.
    Yang Q; Wu X; Han Y; Qing C
    Appl Opt; 2021 May; 60(14):4084-4094. PubMed ID: 33983160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Clouds and Blowing Snow on Surface and Atmospheric Boundary Layer Properties Over Dome C, Antarctica.
    Ganeshan M; Yang Y; Palm SP
    J Geophys Res Atmos; 2022 Nov; 127(21):e2022JD036801. PubMed ID: 37035762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method of estimating time scales of atmospheric piston and its application at Dome C (Antarctica).
    Kellerer A; Sarazin M; Butterley T; Wilson R
    Appl Opt; 2007 Jul; 46(21):4754-62. PubMed ID: 17609723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transitions in the wintertime near-surface temperature inversion at Dome C, Antarctica.
    Baas P; van de Wiel BJH; van Meijgaard E; Vignon E; Genthon C; van der Linden SJA; de Roode SR
    Q J R Meteorol Soc; 2019 Apr; 145(720):930-946. PubMed ID: 31068734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Heavy Pollution Episode in Tianjin Based on UAV Meteorological Sounding and Numerical Model].
    Yang X; Cai ZY; Han SQ; Shi J; Tang YX; Jiang M; Qiu XB
    Huan Jing Ke Xue; 2021 Jan; 42(1):9-18. PubMed ID: 33372452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Variability of Refractivity in the Atmospheric Boundary Layer of a Tropical Island Volcano Measured by Ground-Based Interferometric Radar.
    Wadge G; Costa A; Pascal K; Werner C; Webb T
    Boundary Layer Meteorol; 2016; 161(2):309-333. PubMed ID: 32355339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical seeing-mechanism of formation of thin turbulent laminae in the atmosphere.
    Coulman CE; Vernin J; Fuchs A
    Appl Opt; 1995 Aug; 34(24):5461-74. PubMed ID: 21060368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contribution of upper and lower atmosphere to integrated refractive-index profiles.
    Roddier C; Vernin J
    Appl Opt; 1977 Aug; 16(8):2252-6. PubMed ID: 20168904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating turbulence distribution in the lower atmosphere using time-lapse imagery from a camera bank.
    Wilson BC; Bose-Pillai SR; McCrae JE; Fiorino ST; Freeman RP; Slabaugh LR
    Appl Opt; 2024 Jun; 63(16):E64-E77. PubMed ID: 38856593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiwavelength differential image motion monitor.
    Neimeier D; Oesch D; Andrews J; Baca J; Teare S
    Opt Express; 2002 Jul; 10(13):561-5. PubMed ID: 19436398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical turbulence profiling at the Table Mountain Facility with the Laser Communication Relay Demonstration GEO downlink.
    Birch M; Piazzolla S; Hooser P; Bennet F; Travouillon T; Buehlman W
    Opt Express; 2024 Jun; 32(12):21962-21976. PubMed ID: 38859537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of seeing by means of an atmospheric mesoscale numerical simulation.
    Bougeault P; Hui CD; Fleury B; Laurent J
    Appl Opt; 1995 Jun; 34(18):3481-8. PubMed ID: 21052164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous daytime and nighttime forecast of atmospheric optical turbulence from numerical weather prediction models.
    Quatresooz F; Griffiths R; Bardou L; Wilson R; Osborn J; Vanhoenacker-Janvier D; Oestges C
    Opt Express; 2023 Oct; 31(21):33850-33872. PubMed ID: 37859156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and limitations of optical orbital angular momentum through corrected atmospheric turbulence.
    Neo R; Goodwin M; Zheng J; Lawrence J; Leon-Saval S; Bland-Hawthorn J; Molina-Terriza G
    Opt Express; 2016 Feb; 24(3):2919-30. PubMed ID: 26906859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.